Prep [3] - Second Term - Geometry - Unit [4] - The Circle

Lesson [1] : Basic Definitions And Concepts

The circle

It is the set of points of the plane which are at a constant distance from a fixed point in the same plane.

- The fixed point is called "the centre of the circle".
- The constant distance is called "the radius length of the circle"
- The circle is usually denoted by its centre, so we say the circle M to mean the circle whose centre is the point

Partition of the plane by the circle

Any circle divides the plane into three sets of points which are :
1 The set of points of the circle.
2 The set of points inside the circle.
3 The set of points outside the circle.

For example :

The drawn circle in the opposite figure divides the plane into :
1 The set of points of the circle «on the circle» as : A , B , C ,..
2 The set of points inside the circle as: D, E, F , ...
3 The set of points outside the circle as : Z, K , G , ...

The surface of the circle is : the set of points of the circle U the set of points inside it.
So , the surface of the circle differs from the circle.
For example:

In the opposite figure :

- $\overline{\mathrm{AB}} \cap$ the circle $=\{\mathrm{C}, \mathrm{D}\}$ but $\overline{\mathrm{AB}} \cap$ the surface of the circle $=\overline{\mathrm{CD}}$
- $M \notin$ the circle but $M \in$ the surface of the circle.

The radius of the circle

It is a line segment whose endpoints are the centre of the circle and any point on the circle.

In the opposite figure :
If the points A, B and C belong to the circle M , then $\overline{\mathrm{MA}}, \overline{\mathrm{MB}}$ and $\overline{\mathrm{MC}}$ are called radii of the circle M and $M A=M B=M C=r$ (where r is the radius length of the circle),

Notice that :

1 Any circle has an infinite number of radii and all of them are equal in length.
2 If two radii of two circles are equal in length, then the two circles are congruent and vice versa.

The chord of the circle

It is a line segment whose endpoints are any two points on the circle.
In the opposite figure :
If A, B and C belong to the circle M,
then each of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$
is a chord of the circle M

Notice that :

$\overline{\mathrm{EF}}$ is not a chord of the circle M because $\mathrm{E} \notin$ the circle M

The diameter of the circle

It is a chord passing through the centre of the circle.

In the opposite figure :
If M is a circle, $\bar{A} B$ is a chord of it
, $M \in \overline{A B}$, then $\overline{A B}$ is a diameter of the circle M

Notice that:

1 Any circle has an infinite number of diameters and all of them are equal in length.
2 The diameter of the circle is the longest chord of the circle, and its length $=2 \mathrm{r}$

The circumference of the circle and its area

- The circumference of the circle $=2 \pi \mathrm{r}$
- The area of the circle $=\pi r^{2}$

Symmetry in the circle

- Any straight line passing through the centre of the circle is an axis of symmetry of it.
- Since the number of these straight lines are infinite, then the circle has an infinite number of axes of symmetry.

Important corollaries

Corollary (1)

The straight line passing through the centre of the circle and the midpoint of any chord of it is perpendicular to this chord.

In the opposite figure :
If $\overline{\mathrm{AB}}$ is a chord of the circle M
and C is the midpoint of $\overline{\mathrm{AB}}$, then $\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$

Corollary 2

The straight line passing through the centre of the circle and perpendicular to any chord of it bisects this chord.

In the opposite figure :

If $\overline{\mathrm{AB}}$ is a chord of the circle M and $\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$, where $\mathrm{C} \in \overline{\mathrm{AB}}$, then C is the midpoint of $\overline{\mathrm{AB}}$

Corollary (3)

The perpendicular bisector to any chord of a circle passes through the centre of the circle.

In the opposite figure :
If $\overline{\mathrm{AB}}$ is a chord of the circle M, C is the midpoint of $\overline{\mathrm{AB}}$ and the straight line $\mathrm{L} \perp \overline{\mathrm{AB}}$ from the point C , then $M \in$ the straight line L

From the previous, we deduce that :
The axis of symmetry of any chord of a circle passes through its centre , so this axis is also an axis of symmetry of the circle.

[A] Essay problems : -
In the opposite figure :
$\overline{\mathrm{AB}}$ is a chord of the circle M ,
$\mathrm{m}(\angle \mathrm{D})=25^{\circ}$
and $\mathrm{m}(\angle \mathrm{MAC})=40^{\circ}$
Prove that :

C is the midpoint of $\overline{\mathrm{AB}}$
(Kafr El-Sheikh 09)
In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are two chords in circle M ,
which has radius length of 5 cm .,
2
$\overrightarrow{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ intersects $\overline{\mathrm{AB}}$ at D and inersects the circle M at E ,
X is the midpoint of $\overline{\mathrm{BC}}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{ABC})=56^{\circ}$
Find: $1 \mathrm{~m}(\angle \mathrm{DMX})$
(2) The length of $\overline{\mathrm{DE}}$

(El-Menia 19, El-Gharbia 17 ,Souhag 15) « $124^{\circ}, 2 \mathrm{~cm} . »$

In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords of the circle M ,
$\mathrm{m}(\angle \mathrm{BAC})=45^{\circ}$,
3
D and E are the midpoints
of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively.

Prove that : $\triangle \mathrm{DFM}$ is an isosceles triangle.

In the opposite figure :

M is a circle of radius length 13 cm .,
$\overline{\mathrm{AB}}$ is a chord of length 24 cm .,
4 C is the midpoint of $\overline{\mathrm{AB}}$ and $\overrightarrow{\mathrm{MC}} \cap$ circle $M=\{D\}$
Find : The area of the triangle ADB

(El-Dakahlia 13) « $96 \mathrm{~cm}^{2}$ »

In the opposite figure :

M is a circle,$\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$,
5 X is the midpoint of $\overline{\mathrm{AB}}$ and $\overrightarrow{\mathrm{XM}}$ is drawn to cut $\overline{\mathrm{CD}}$ at Y

Prove that: Y is the midpoint of $\overline{\mathrm{CD}}$
(El-Menia 18, Assiut 18, Aswan 15 , Alexandria 13)

In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in circle M
that includes an angle of measure 120°,
$6 \quad \mathrm{D}$ and E are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\overrightarrow{\mathrm{DM}}$ and $\overrightarrow{\mathrm{EM}}$ are drawn to intersect the circle at X and Y respectively.

Prove that : The triangle XYM is an equilateral triangle.
(Aswan 16, Beni Suef 15)
In the opposite figure :
$\mathrm{AC}=\mathrm{AB}, \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$,
7 Y is the midpoint of $\overline{\mathrm{AC}}$,
$\mathrm{m}(\angle \mathrm{MXY})=30^{\circ}$
Prove that : The triangle AXY is equilateral.

(Assiut 14)

Solutions

A	Essay Problems
1	$\because \mathrm{MA}=\mathrm{MD}=\mathrm{r}$ $\therefore \triangle \mathrm{AMD}$ is an isosceles triangle. $\begin{aligned} & \therefore \mathrm{m}(\angle \mathrm{DAM})=\mathrm{m}(\angle \mathrm{ADM})=25^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{DAC})=25^{\circ}+40^{\circ}=65^{\circ} \\ & \therefore \mathrm{In} \triangle \mathrm{ADC}: \\ & \mathrm{m}(\angle \mathrm{ACD})=180^{\circ}-\left(25^{\circ}+65^{\circ}\right)=90^{\circ} \\ & \therefore \overline{\mathrm{DC}} \perp \overline{\mathrm{AB}} \quad \because \mathrm{M} \in \overline{\mathrm{DC}} \end{aligned}$ $\therefore \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$ (Q.E.D)
2	$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{CB}}$ $\begin{aligned} & \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{BC}} \\ & \therefore \mathrm{~m}(\angle \mathrm{DMX}) \\ & =360^{\circ}-\left(90^{\circ}+90^{\circ}+56^{\circ}\right) \\ & =124^{\circ} \quad \text { (First req.) } \\ & , \because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \end{aligned}$ $\therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \mathrm{AD}=4 \mathrm{~cm} .$ In $\triangle \mathrm{ADM}$: $\begin{aligned} & \because \mathrm{m}(\angle \mathrm{ADM})=90^{\circ}, \mathrm{AM}=\mathrm{r}=5 \mathrm{~cm} . \\ & \begin{aligned} \therefore \mathrm{MD}=\sqrt{(\mathrm{AM})^{2}-(\mathrm{AD})^{2}} & =\sqrt{25-16} \\ & =\sqrt{9}=3 \mathrm{~cm} . \end{aligned} \end{aligned}$ $\therefore \mathrm{DE}=5-3=2 \mathrm{~cm} .$ (Second req.)
3	$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ $\therefore \mathrm{m}(\angle \mathrm{BDM})=90^{\circ}$ similarly $\mathrm{m}(\angle \mathrm{MEA})=90^{\circ}$ \therefore From $\triangle \mathrm{AFE}: \mathrm{m}(\angle \mathrm{DFM})=45^{\circ}$ and from $\triangle \mathrm{DFM}: \mathrm{m}(\angle \mathrm{DMF})=45^{\circ}$ $\therefore \Delta \mathrm{DFM}$ is an isosceles triangle. (Q.E.D)
4	$\because \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$ In $\triangle \mathrm{ACM}: \because \mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$ $\therefore(\mathrm{MC})^{2}=(\mathrm{AM})^{2}-(\mathrm{AC})^{2}$ (Pythagoras' theorem) $\therefore(\mathrm{MC})^{2}=(13)^{2}-(12)^{2}=25 \quad \therefore \mathrm{MC}=5 \mathrm{~cm}$. $\therefore C D=M D-M C=13-5=8 \mathrm{~cm}$. \therefore The area of $\triangle \mathrm{ADB}=\frac{1}{2} \times 24 \times 8=96 \mathrm{~cm}^{2}$. (The req.)

5	$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ $\therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}$ $, \because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}, \overline{\mathrm{XY}}$ is a transversal $\begin{aligned} & \therefore \mathrm{m}(\angle \mathrm{XYD})=\mathrm{m}(\angle \mathrm{AXY}) \\ &=90^{\circ} \text { (alternate angles) } \\ & \therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}} \end{aligned}$ $\therefore \mathrm{Y}$ is the midpoint of $\overline{\mathrm{CD}}$
6	$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MD}}-\overline{\mathrm{AB}}$ $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$ $\therefore \mathrm{m}(\angle \mathrm{DME})=360^{\circ}-\left(120^{\circ}+90^{\circ}+90^{\circ}\right)=60^{\circ}$ $\therefore m(\angle \mathrm{XMY})=m(\angle \mathrm{DME})=60^{\circ}$ (V.O.A) $\because M X=M Y=r$ $\therefore \triangle X Y M$ is an equilateral triangle. (Q.E.D)
7	$\begin{aligned} & \because \mathrm{X} \text { is the midpoint of } \overline{\mathrm{AB}} \\ & \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \\ & \therefore \mathrm{~m}(\angle \mathrm{AXY})=90^{\circ}-30^{\circ}=60^{\circ} \\ & , \because \mathrm{AB}=\mathrm{AC} \quad \therefore \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{AC} \\ & \therefore \mathrm{AX}=\mathrm{AY} \quad, \because \mathrm{~m}(\angle \mathrm{AXY})=60^{\circ} \end{aligned}$ $\therefore \triangle \mathrm{AXY}$ is an equilateral triangle. (Q.E.D.)
8	In the great circle : $\because \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{AB}}$ $\begin{equation*} \therefore \mathrm{AE}=\mathrm{EB} \tag{1} \end{equation*}$ In the small circle : $\begin{align*} & \because \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}} \quad \therefore \mathrm{E} \text { is the midpoint of } \overline{\mathrm{CD}} \\ & \therefore \mathrm{CE}=\mathrm{ED} \tag{2} \end{align*}$ Subtracting (2) from (1) : $\therefore \mathrm{AE}-\mathrm{CE}=\mathrm{EB}-\mathrm{ED}$ $\begin{equation*} \therefore \mathrm{AC}=\mathrm{BD} \tag{Q.E.D} \end{equation*}$
9	$\because \overline{\mathrm{MD}} \perp \overline{\mathrm{BC}} \quad \therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{BC}}$ $\because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$ $\therefore \mathrm{In} \triangle \mathrm{ABC}:$ $\because \mathrm{D}$ and E are the two midpoints of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ respectively. $\therefore \overline{\mathrm{ED}} / / \overline{\mathrm{AB}}$ (Q.E.D 1)

	$\because \mathrm{D}$ is the midpoint of $\overline{\mathrm{BC}}$ $\therefore \mathrm{DC}=\frac{1}{2} \mathrm{BC}$ $\because \mathrm{E}$ is the midpoint of $\overline{\mathrm{AC}}$ $\therefore \mathrm{EC}=\frac{1}{2} \mathrm{AC}$ $\because \mathrm{D}$ and E are the two midpoints of $\overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$ respectively. $\begin{equation*} \therefore \mathrm{DE}=\frac{1}{2} \mathrm{AB} \tag{3} \end{equation*}$ Adding (1) , (2) and (3) : \therefore The perimeter of $\triangle \mathrm{CDE}$ $\begin{equation*} =\frac{1}{2} \text { the perimeter of } \triangle \mathrm{ABC} \tag{Q.E.D.2} \end{equation*}$
10	In $\triangle \mathrm{AMC}$: $\begin{align*} & \because \mathrm{AM}=\mathrm{MC}=\mathrm{r} \quad \therefore \mathrm{~m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{ACM}) \\ & \because \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{MAC}) \\ & \therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACM}) \text { and they are } \\ & \quad \text { alternate angles } \\ & \therefore \overline{\mathrm{AB}} / / \overline{\mathrm{CM}} \\ & \because \mathrm{D} \text { is the midpoint of } \overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \\ & \because \overline{\mathrm{AB}} / / \overline{\mathrm{CM}} \quad \therefore \overline{\mathrm{DM}} \perp \overline{\mathrm{CM}} \quad \text { (Q.E.D) } \tag{Q.E.D} \end{align*}$
11	In $\triangle \mathrm{MNC}: \because \mathrm{NC}+\mathrm{MC}>\mathrm{NM}$ (triangle inequality) $\begin{align*} & , \because M A=M C=r \quad, N M=A N+M A \\ & \therefore N C+M C>A N+M A \\ & \therefore N C>A N \tag{Q.E.D.} \end{align*}$
12	Construction : Draw $\overrightarrow{\mathrm{ME}} \perp \overleftrightarrow{\mathrm{CD}}$ to cut it at E Proof : $\because \overline{\mathrm{ME}} \perp \overline{\mathrm{CD}}$ $\therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{CD}}$ $, \mathrm{m}(\angle \mathrm{XCE})=\mathrm{m}(\angle \mathrm{MED})=90^{\circ}$ but they are corresponding angles $\therefore \overline{\mathrm{XC}} / / \overline{\mathrm{ME}}$ similarly $\overline{\mathrm{ME}} / / \overline{\mathrm{YD}}$ $\therefore \overline{\mathrm{XC}} / / \overline{\mathrm{ME}} / / \overline{\mathrm{YD}}$ $\because \overleftrightarrow{\mathrm{XY}}$ and $\overrightarrow{\mathrm{CD}}$ are two transversals to them , $\mathrm{CE}=\mathrm{ED}$ $\therefore X M=M Y$ $\because A M=B M=r$ $\therefore \mathrm{AM}-\mathrm{XM}=\mathrm{BM}-\mathrm{MY}$ $\therefore \mathrm{AX}=\mathrm{BY}$ (Q.E.D.)

Prep [3] - Second Term - Geometry - Unit [4] - The Circle

Lesson [2] : Positions Of A Point and A Straight Line With Respect To A Circle

First Position of a point with respect to a given circle

If M is a circle of radius length r and A is a point in its plane, then :
(1) A is outside the circle M

If $\mathrm{MA}>\mathbf{r}$
(2) A is on the circle M

If $\mathbf{M A}=\mathbf{r}$
A is inside the circle M

If $\mathbf{M A}<\mathbf{r}$

Second Position of a straight line with respect to a circle

$\begin{gathered} 1 \\ \mathbf{M A}>\mathbf{r} \end{gathered}$	Then The straight line L lies outside the circle M	The figure	Note that - $\mathrm{L} \cap$ the circle $\mathrm{M}=\varnothing$ - $\mathrm{L} \cap$ the surface of the circle $\mathrm{M}=\varnothing$
$\begin{gathered} 2 \\ \mathbf{M A}=\mathbf{r} \end{gathered}$	The straight line Lis a tangent to the circle M at A A is called "the point of tangency"		- $\mathrm{L} \cap$ the circle $\mathrm{M}=\{\mathrm{A}\}$ - $L \cap$ the surface of the circle $M=\{A\}$
	The straight line L is a secant to the circle M		- $\mathrm{L} \cap$ the circle $\mathrm{M}=\{\mathrm{X}, \mathrm{Y}\}$ - $\mathrm{L} \cap$ the surface of the circle $\mathrm{M}=\overline{\mathrm{XY}}$ - $\overline{\mathrm{XY}}$ is called the chord of intersection

The two tangents which are drawn from the two endpoints of a diameter of a circle are parallel.

Two important facts

The tangent to a circle is perpendicular to the radius drawn from the point of tangency.

i.e. if the straight line L is a tangent to the circle M at the point A, then $\overline{\mathrm{MA}} \perp \mathrm{L}$

2 The straight line which is perpendicular to the diameter of a circle at one of its endpoints is a tangent to the circle.

i.e. if $\overline{\mathrm{AB}}$ is a diameter of the circle M and the straight line $\mathrm{L} \perp \overline{\mathrm{AB}}$ at the point A , then L is a tangent to the circle M at the point A

[A] Essay problems : -

In the opposite figure :
$\overrightarrow{\mathrm{BC}}$ is a tangent at B
, $\mathrm{m}(\angle \mathrm{C})=45^{\circ}$
1
, D is the midpoint of $\overline{\mathrm{AH}}$
Prove that : DA $=\mathrm{DM}$

In the opposite figure :

AB is a diameter in the circle M ,
$\overrightarrow{\mathrm{AC}}$ is a tangent to the circle at A ,
$\mathrm{m}(\angle \mathrm{DMB})=100^{\circ}$
Find by proof :
$1 \mathrm{~m}(\angle \mathrm{ACB})$
2 $\mathrm{m}(\angle \mathrm{CDM})$
(El-Menia 11) « 50°, 140° »

In the opposite figure :

M is a circle with radius length 5 cm .,
$\mathrm{XY}=12 \mathrm{~cm} ., \overline{\mathrm{MY}} \cap$ circle $\mathrm{M}=\{\mathrm{Z}\}$
and $Z Y=8 \mathrm{~cm}$.
Prove that : $\overleftrightarrow{X Y}$ is a tangent to the circle M at X

(Matrouh 17, South Sinat 16, Qena 15, El-Beheira 14)
In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A ,
$4 \quad \mathrm{MA}=8 \mathrm{~cm} ., \mathrm{m}(\angle \mathrm{ABM})=30^{\circ}$ and $\overline{\mathrm{AC}} \perp \overline{\mathrm{MB}}$
Find : The length of each of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$
(Giza 19 , Matrouh 18 , New Valley 18 , El-Monofia 14) $<8 \sqrt{3} \mathrm{~cm} ., 4 \sqrt{3} \mathrm{~cm} . »$

In the opposite figure :
M is a circle,$\overleftrightarrow{X Y}$ is a tangent to the circle at X
$5, \overline{\mathrm{MY}} \cap$ the circle $\mathrm{M}=\{\mathrm{Z}\}$,
$X Y=12 \mathrm{~cm} ., Y Z=8 \mathrm{~cm}$.
Find : The radius length of the circle.

(El-Menia 13) « $5 \mathrm{~cm} . »$

In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ are two tangents to the circle M
, touch it at B, C respectively
and $\mathrm{m}(\angle \mathrm{BAM})=25^{\circ}$

Prove that : $\overrightarrow{\mathrm{MA}}$ bisects $\angle \mathrm{BMC}$
2 Find : $m(\angle B M C)$
(Port Said 17) 《 130° »

$\overline{\mathrm{AB}}$ is a diameter in a circle of area $36 \pi \mathrm{~cm}^{2}, \overleftrightarrow{\mathrm{BC}}$ is drawn a tangent to the circle at B , if $\mathrm{m}(\angle \mathrm{ACB})=60^{\circ}$, then calculate the area of $\triangle \mathrm{ABC}$ (El-Dakahlia 14) « $24 \sqrt{3} \mathrm{~cm}^{2}$ »

Prove that : The points $A(3,-1), B(-4,6)$ and $C(2,-2)$ are located in circle whose centre is the point $\mathrm{M}(-1,2)$, then find the circumference of the circle.
(El-Beheira 11) «10 π length units»
\pm If $\overline{\mathrm{CD}}$ is a diameter of circle M where $\mathrm{M}(1,1), \mathrm{D}(3,-2)$
Find: The equation of the tangent to M at C
(El-Dakahlia 11) « $y=\frac{2}{3} x+4 \frac{2}{3}$ »

In the opposite figure :
$\overrightarrow{\mathrm{AB}}$ touches the circle M at $\mathrm{B}, \overline{\mathrm{CD}}$ is a diameter of it,
$\mathrm{m}(\angle \mathrm{BAM})=x^{\circ}$ and $\mathrm{m}(\angle \mathrm{MDB})=2 x^{\circ}$
Find : The value of x in degrees.

(Ismailia 06) « 18° »

In the opposite figure :
Two circles are concentric at M
, $\overline{\mathrm{AB}}$ is a chord in the greater circle and touches
the smaller circle at C , if $\mathrm{AB}=14 \mathrm{~cm}$.
Find : The area of the part included between the two circles.
(El-Dakahlia 19) « $49 \pi \mathrm{~cm}^{2}$ »

In the opposite figure :
M and N are two congruent circles,
$\overleftrightarrow{\mathrm{AB}}$ is a common tangent to them,
C is the midpoint of $\overline{\mathrm{AB}}$,
the circle $M \cap \overline{M C}=\{X\}$, the circle $N \cap \overline{N C}=\{Y\}$
Prove that: $1 \overline{\mathrm{AB}} / / \overline{\mathrm{MN}}$
(2) $\triangle \mathrm{CMN}$ is an isosceles triangle.
(3) $\overline{\mathrm{XY}} / / \overline{\mathrm{MN}}$

[B] Choose the correct :-

If a straight line L is a tangent to the circle M whose diameter length is 8 cm ., then L 1 is at a distance of $\ldots \ldots \ldots \ldots \mathrm{cm}$. from its centre.
(Souhag 19 ,El-Kalyoubia 18)
(a) 3
(b) 4
(c) 6
(d) 8

A circle M is of radius length 5 cm ., A is a point outside the circle
2 then MA equals \qquad cm .
(Gharbia 03)
(a) 3
(b) 5
(c) 8
(d) 4

If the diameter length of a circle is 8 cm . and the straight line L is at distance of 3 cm . from its centre, then the straight line L is \qquad
(a) a tangent to the circle.
(b) a secant to the circle.
(c) outside the circle.
(d) an axis of symmetry of the circle.

If M is a circle its diameter length $=14 \mathrm{~cm} ., \mathrm{MA}=(2 \chi+3) \mathrm{cm}$. where A is a point on 4 the circle, then $x=$ \qquad (El-Kalyoubia 17, El-Sharkia 15)
(a) 5
(b) 3
(c) 2
(d) 1
[1 $\overline{\mathrm{AB}}$ is a diameter in a circle $\mathrm{M}, \overleftrightarrow{\mathrm{AC}}$ and $\overleftrightarrow{\mathrm{BD}}$ are two tangents to the circle , then $\overleftrightarrow{\mathrm{AC}}$ $\overleftrightarrow{\mathrm{BD}}$
(Alexandria 13)
5
(a) intersects
(b) is perpendicular to
(c) is parallel to
(d) is coincident to
$\mathbb{C D}$ A circle is of a circumference $6 \pi \mathrm{~cm}$., and the straight line L is distant from its centre by 3 cm ., then the straight line L is
(Red Sea 19 , Red Sea 17 , El-Monofia 15)
(a) a tangent to the circle.
(b) a secant.
(c) outside the circle.
(d) a diameter of the circle.

If the area of the circle M is $16 \pi \mathrm{~cm}^{2}$, A is a point in its plane where $M A=8 \mathrm{~cm}$. , 7 then A lies the circle M
(Qena 17, El-Sharkia 09)
(a) inside
(b) outside
(c) on
(d) at the centre of
\mathbf{M} is a circle with diameter of length 8 cm . If the straight line L is outside the circle , then the distance between the centre of the circle and the straight line $\mathrm{L} \in$
(a) $] 4, \infty[$
(b) $[0,4[$
(c) $] 0,4[$
(d) $[0,8]$
(Kafr El-Sheikh 14)

A circle with diameter length $(2 x+5) \mathrm{cm}$., the straight line L is at a distance $(x+2) \mathrm{cm}$. from its centre, then the straight line L is \qquad
(a) a secant to the circle at the two points.
(b) outside the circle.
(c) a tangent to the circle.
(d) an axis of symmetry of the circle.
$\overrightarrow{\mathrm{AB}}$ is a tangent to the circle M
, $\mathrm{m}(\angle \mathrm{B})=30^{\circ}, \mathrm{AM}=6 \mathrm{~cm}$.
10 , then $\mathrm{MB}=$ cm .
(Red Sea 18)
(a) 3
(b) 6
(c) 9
(d) 12

Solutions

A	Essay Problems
1	$\begin{align*} & \because \overrightarrow{\mathrm{BC}} \text { is a tangent to the circle } \mathrm{M} \text { at } \mathrm{B} \\ & \therefore \overline{\mathrm{BC}} \perp \overline{\mathrm{MB}} \\ & \text { In } \triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{~A})=180^{\circ}-\left(45^{\circ}+90^{\circ}\right)=45^{\circ} \\ & , \because \mathrm{D} \text { is the midpoint of } \overline{\mathrm{AH}} \quad \therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AH}} \\ & \text { In } \triangle \mathrm{ADM} \text { : } \\ & \mathrm{m}(\angle \mathrm{DMA})=180^{\circ}-\left(45^{\circ}+90^{\circ}\right)=45^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{DAM})=\mathrm{m}(\angle \mathrm{DMA}) \\ & \therefore \mathrm{DA}=\mathrm{DM} \tag{Q.E.D.} \end{align*}$
2	In $\triangle \mathrm{MDB}$: $\begin{aligned} & \because M D=M B=r \\ & \therefore \mathrm{~m}(\angle M B D)=m(\angle M D B)=\frac{180^{\circ}-100^{\circ}}{2}=40^{\circ} \end{aligned}$, $\because \overleftrightarrow{\mathrm{AC}}$ is a tangent to the circle M at A $\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AC}}$ In $\triangle \mathrm{ABC}$: $\begin{aligned} & \mathrm{m}(\angle \mathrm{C})=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ} \quad \text { (First req.) } \\ & , \mathrm{m}(\angle \mathrm{CDM})=180^{\circ}-40^{\circ}=140^{\circ} \text { (Second req.) } \end{aligned}$
3	$\begin{aligned} & \because M Z=r=5 \mathrm{~cm} . \quad \therefore M Y=13 \mathrm{~cm} . \\ & , \because(M Y)^{2}=169,(M X)^{2}=25 \\ & ,(X Y)^{2}=144 \\ & \therefore(M X)^{2}+(X Y)^{2}=(M Y)^{2} \\ & \therefore m(\angle M X Y)=90^{\circ} \quad \therefore \overline{X Y} \perp \overline{M X} \end{aligned}$ $\therefore \overleftrightarrow{\mathrm{XY}}$ is a tangent to the circle M at X (Q.E.D.)
4	$\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A $\begin{aligned} & \therefore \mathrm{m}(\angle \mathrm{MAB})=90^{\circ} \\ & \therefore \tan (\angle \mathrm{B})=\frac{\mathrm{MA}}{\mathrm{AB}} \quad \therefore \tan 30^{\circ}=\frac{8}{\mathrm{AB}} \\ & \therefore \frac{1}{\sqrt{3}}=\frac{8}{\mathrm{AB}} \quad \therefore \mathrm{AB}=8 \sqrt{3} \mathrm{~cm} . \end{aligned}$ In $\triangle A B C$ which is right-angled at C $\begin{aligned} & \because \mathrm{m}(\angle \mathrm{ABC})=30^{\circ} \\ & \begin{aligned} \therefore \mathrm{AC}=\frac{1}{2} \mathrm{AB} & =\frac{1}{2} \times 8 \sqrt{3} \\ & =4 \sqrt{3} \mathrm{~cm} . \quad \text { (Second req.) } \end{aligned} \end{aligned}$

5	$\because \overleftrightarrow{\mathrm{XY}}$ is a tangent to the circle at X $\begin{aligned} & \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{XY}} \quad \therefore \mathrm{~m}(\angle \mathrm{MXY})=90^{\circ} \\ & \therefore \mathrm{In} \triangle \mathrm{MXY}:(\mathrm{MY})^{2}=(\mathrm{MX})^{2}+(\mathrm{XY})^{2} \\ & \therefore(\mathrm{MZ}+8)^{2}=(\mathrm{MX})^{2}+144 \\ & \because \mathrm{MZ}=\mathrm{MX}=\mathrm{r} \quad \therefore(\mathrm{r}+8)^{2}=r^{2}+144 \\ & \therefore \mathrm{r}^{2}+16 \mathrm{r}+64=r^{2}+144 \quad \therefore 16 \mathrm{r}=80 \\ & \therefore \mathrm{r}=\frac{80}{16}=5 \mathrm{~cm} . \end{aligned}$
6	$\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at B $\therefore \overrightarrow{\mathrm{MB}} \perp \overrightarrow{\mathrm{AB}}$ $\therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$,$\cdots \overrightarrow{A C}$ is a tangent to the circle M at C $\overrightarrow{\mathrm{MC}} \perp \overrightarrow{\mathrm{AC}} \quad \therefore \mathrm{~m}(\angle \mathrm{ACM})=90^{\circ}$ \therefore In $\triangle \triangle A B M, A C M$ which are right-angled $\begin{aligned} & \left\{\begin{array}{l} \mathrm{MB} \\ \mathrm{AM} \\ \text { is a common hypotenuse } \end{array}\right. \\ & \therefore \triangle \mathrm{ABM} \equiv \triangle \mathrm{ACM} \\ & \therefore \mathrm{~m}(\angle \mathrm{AMB})=\mathrm{m}(\angle \mathrm{AMC}) \\ & \therefore \overrightarrow{\mathrm{MA}} \text { bisects } \angle \mathrm{BMC} \end{aligned}$ (First req.) From $\triangle \mathrm{ABM}: \mathrm{m}(\angle \mathrm{AMB})=180^{\circ}-\left(90^{\circ}+25^{\circ}\right)$ $=65^{\circ}$ $\therefore \mathrm{m}(\angle \mathrm{BMC})=2 \times 65^{\circ}=130^{\circ} \quad$ (Second req.)
7	In the small circle : $\because \overleftrightarrow{\mathrm{AB}}$ is a tangent atc $\quad \therefore \overrightarrow{\mathrm{MC}} \perp \overleftrightarrow{\mathrm{AB}}$ In the great circle : $\because \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$ $\therefore \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \mathrm{AC}=4 \mathrm{~cm}$. ,$\because \mathrm{AM}=5 \mathrm{~cm}$. \therefore In $\triangle \mathrm{ACM}$ which is right-angled at C $\mathrm{MC}=\sqrt{(\mathrm{AM})^{2}-(\mathrm{AC})^{2}}=\sqrt{25-16}=3 \mathrm{~cm} . \text { (The req.) }$
8	$\begin{aligned} & \because \overrightarrow{\mathrm{DC}} \text { is a tangent to the circle } \mathrm{M} \text { at } \mathrm{C} \\ & \therefore \overrightarrow{\mathrm{MC}} \perp \overrightarrow{\mathrm{DC}} \quad \therefore \mathrm{~m}(\angle \mathrm{MCD})=90^{\circ} \\ & \therefore \mathrm{In} \triangle \mathrm{DMC}: \mathrm{m}(\angle \mathrm{DMC})=180^{\circ}-\left(90^{\circ}+20^{\circ}\right)=70^{\circ} \\ & \because \overrightarrow{\mathrm{AB}} / / \overrightarrow{\mathrm{MD}}, \overrightarrow{\mathrm{AE}} \text { is a transversal to them } \\ & \therefore \mathrm{m}(\angle \mathrm{MEC})=\mathrm{m}(\angle \mathrm{BAE})=80^{\circ} \\ & \\ & \therefore \text { (corresponding angles) } \\ & \mathrm{m}(\angle \mathrm{MCM})=180^{\circ}-\left(70^{\circ}+80^{\circ}\right)=30^{\circ} \text { (The req.) } \end{aligned}$

9
,$\because \overleftrightarrow{\mathrm{BC}}$ is a tangent to the circle M at B
$\therefore \overline{\mathrm{BC}} \perp \overline{\mathrm{AB}}$
In $\triangle A B C: \tan (\angle C)=\frac{A B}{B C} \quad \therefore \tan 60^{\circ}=\frac{12}{B C}$
$\therefore B C=\frac{12}{\tan \left(60^{\circ}\right)}=\frac{12}{\sqrt{3}}=4 \sqrt{3} \mathrm{~cm}$.
\therefore The area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
=\frac{1}{2} \mathrm{AB} \times \mathrm{BC} & =\frac{1}{2} \times 12 \times 4 \sqrt{3} \\
& =24 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

(The req.)

$$
\begin{aligned}
\because \mathrm{MA}=\sqrt{(-1-3)^{2}+(2+1)^{2}} & =\sqrt{16+9}=\sqrt{25} \\
& =5 \text { length units } \\
, \mathrm{MB}=\sqrt{(-1+4)^{2}+(2-6)^{2}} & =\sqrt{9+16}=\sqrt{25} \\
& =5 \text { length units } \\
, \mathrm{MC}=\sqrt{(-1-2)^{2}+(2+2)^{2}} & =\sqrt{9+16}=\sqrt{25} \\
& =5 \text { length units }
\end{aligned}
$$

$\therefore \mathrm{MA}=\mathrm{MB}=\mathrm{MC}$
\therefore The points A, B and C lie on the circle M (Q.E.D. 1)
, its circumference $=10 \pi$ length units. \quad (Q.E.D.2)
$\because \overline{\mathrm{CD}}$ is a diameter in the circle M
$\therefore \mathrm{M}$ is the midpoint of $\overline{\mathrm{CD}}$
Let $\mathrm{C}(x, y) \quad \therefore(1,1)=\left(\frac{x+3}{2}, \frac{y-2}{2}\right)$
$\therefore \frac{x+3}{2}=1$
$\therefore x+3=2 \quad \therefore x=-1$
, $\frac{\mathrm{y}-2}{2}=1$
$\therefore C=(-1,4)$
11
,\because the slope of $\stackrel{\rightharpoonup}{C D}=\frac{-2-4}{3+1}=\frac{-6}{4}=$
\therefore The slope of the perpendicular straight line to $\overleftrightarrow{C D}=\frac{2}{3}$
, \because the tangent to the circle M at C is perpendicular to $\overline{\mathrm{CD}}$
\therefore The slope of the tangent to the circle at $\mathrm{C}=\frac{2}{3}$
\therefore The equation of the tangent is: $\mathrm{y}=\frac{2}{3} x+c$
,\because the tangent passes through the point $\mathrm{C}(-1,4)$
$\therefore 4=\frac{2}{3} \times-1+c \quad \therefore \mathrm{c}=4 \frac{2}{3}$
\therefore The equation is : $\mathrm{y}=\frac{2}{3} x+4 \frac{2}{3} \quad$ (The req.)
$\because \overline{\mathrm{AB}}$ touches the small circle at C
$\therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
, $\because \overline{\mathrm{AB}}$ is a chord of the
great circle,$\overline{\mathrm{MC}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AC}=\frac{14}{2}=7 \mathrm{~cm}$
$12 \quad \because \triangle \mathrm{AMC}$ is right angled at C
$\therefore(A C)^{2}=(M A)^{2}-(M C)^{2}$
$\therefore(7)^{2}=(M A)^{2}-(M C)^{2}$
$\therefore(M A)^{2}-(M C)^{2}=49$
\therefore The area of the included part between the two circles $=$ the area of the greater circle - the area of the smaller circle $=\pi(\mathrm{MA})^{2}-\pi(\mathrm{MC})^{2}$ $=\pi\left[(M A)^{2}-(M C)^{2}\right]=49 \pi \mathrm{~cm}^{2} \quad$ (The req.)
$\because \overleftrightarrow{\mathrm{AB}}$ is a tangent to the circle M at B
$\therefore \overrightarrow{\mathrm{MB}} \perp \stackrel{\rightharpoonup}{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{ABM})=90^{\circ}$
$\because \mathrm{MB}=\mathrm{MD}$ (lengths of two radii)
$13 \quad \therefore \mathrm{~m}(\angle \mathrm{MBD})=\mathrm{m}(\angle \mathrm{MDB})=2 x^{\circ}$ In $\triangle \mathrm{ABD}: \mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{ABD})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
$\therefore x^{\circ}+90^{\circ}+2 x^{\circ}+2 x^{\circ}=180^{\circ}$
$\therefore 5 x^{\circ}=90^{\circ}$
$\therefore x=18^{\circ}$
(The req.)

14	Construction : We draw $\overline{\mathrm{MA}}$ and $\overline{\mathrm{NB}}$ Proof : $\because \overrightarrow{\mathrm{AB}}$ is a tangent to the circle M at A $\therefore \overline{\mathrm{MA}} \perp \overleftrightarrow{\mathrm{AB}}$ similarly $\overline{\mathrm{NB}} \perp \overrightarrow{\mathrm{AB}}$ $\therefore \overline{\mathrm{MA}} / / \overline{\mathrm{BN}}$,$\because M A=\mathrm{NB}$ (two radii of two congruent circles) \therefore AMNB is a parallelogram $\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{MN}}$ (Q.E.D. 1) In $\triangle \triangle A M C, B N C$: $\begin{align*} & \left\{\begin{array}{l} \mathrm{AC}=\mathrm{BC} \\ \mathrm{MA}=\mathrm{BN} \\ \mathrm{~m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{NBC})=90^{\circ} \end{array} \quad \begin{array}{l} \text { (given) } \\ \text { (given) } \end{array}\right. \\ & \therefore \triangle \mathrm{AMC} \equiv \triangle \mathrm{BNC} \quad \therefore \mathrm{MC}=\mathrm{NC} \tag{1} \end{align*}$ $\therefore \triangle \mathrm{CMN}$ is an isosceles triangle (Q.E.D. 2) $\because M X=N Y$ \therefore Subtracting (2) from (1) : $\therefore M C-M X=N C-N Y \quad \therefore C X=C Y$ \therefore From the isosceles triangle XCY $\begin{equation*} \therefore \mathrm{m}(\angle \mathrm{CXY})=\frac{180^{\circ}-\mathrm{m}(\angle 1)}{2} \tag{3} \end{equation*}$ and from the isosceles triangle MNC $\begin{equation*} \therefore \mathrm{m}(\angle \mathrm{CMN})=\frac{180^{\circ}-\mathrm{m}(\angle 1)}{2} \tag{4} \end{equation*}$ From (3) and (4):m ($\angle \mathrm{CXY})=\mathrm{m}(\angle \mathrm{CMN})$ and they are corresponding angles $\therefore \overline{\mathrm{XY}} / / \overline{\mathrm{MN}}$
B	Choose
1	B
2	C
3	B
4	
5	C
6	A
7	B

\therefore AMNB is a parallelogram
$\therefore \overline{\mathrm{AB}} / / \overline{\mathrm{MN}}$
(given)
(given)
$\mathrm{m}(\angle \mathrm{MAC})=\mathrm{m}(\angle \mathrm{NBC})=90^{\circ} \quad$ (proved)
$\therefore \triangle \mathrm{CMN}$ is an isosceles triangle (Q.E.D. 2)
$\because M X=N Y$
\therefore Subtracting (2) from (1):
$\therefore \mathrm{MC}-\mathrm{MX}=\mathrm{NC}-\mathrm{NY} \quad \therefore \mathrm{CX}=\mathrm{CY}$
\therefore From the isosceles triangle XCY
$\therefore \mathrm{m}(\angle \mathrm{CXY})=\frac{180^{\circ}-\mathrm{m}(\angle 1)}{2}$
and from the isosceles triangle MNC
$\therefore \mathrm{m}(\angle \mathrm{CMN})=\frac{180^{\circ}-\mathrm{m}(\angle 1)}{2}$
From (3) and (4) : $m(\angle C X Y)=m(\angle C M N)$
are corresponding angles
(Q.E.D. 3)

Prep [3] - Second Term - Geometry - Unit [4] - The Circle

Lesson [3] : Positions Of A Circle With Respect To Another Circle

Then the two circles are : Distant

Notice that:

- The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\varnothing$
- The surface of circle $M \cap$ the surface of circle $N=\varnothing$

If $\mathrm{r}_{1}-\mathrm{r}_{2}<\mathrm{MN}<\mathrm{r}_{1}+\mathrm{r}_{2}$

Then the two circles are : Intersecting

Notice that :

- The circle $M \cap$ the circle $N=\{A, B\}$
- The surface of circle $M \cap$ the surface of circle $\mathrm{N}=$ the surface of the shaded part.

If $\mathrm{MN}=\mathrm{r}_{1}+\mathrm{r}_{2}$

Then the two circles are : Touching externally

Notice that

- The circle $M \cap$ the circle $N=\{A\}$
- The surface of circle $M \cap$ the surface of circle $N=\{A\}$

$$
\text { If } \mathrm{MN}=\mathrm{r}_{1}-\mathrm{r}_{2}
$$

Then the two circles are : Touching internally

Notice that :

- The circle $M \cap$ the circle $N=\{A\}$
- The surface of circle $\mathrm{M} \cap$ the surface of circle $\mathrm{N}=$ the surface of circle N

If $\mathrm{MN}=$ zero

Then the two circles are : Concentric
(the circle N is inside the circle M)

Notice in the two cases that :

- The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\varnothing$
- The surface of circle $\mathrm{M} \cap$ the surface of circle $\mathrm{N}=$ the surface of circle N

Summary

ec Remarks

From the previous summary, we notice that :
(1) If M and N are two distant circles, then : $\mathrm{MN} \in] \mathrm{r}_{1}+\mathrm{r}_{2}, \infty[$
(2) If M and N are two intersecting circles, then: $M N \in] r_{1}-r_{2}, r_{1}+r_{2}[$
(3) If M and N (one of them is inside the other), then : $M N \in] 0, r_{1}-r_{2}[$

Corollary 1

The line of centres of two touching circles passes through the point of tangency and is perpendicular to the common tangent at this point.

In the two opposite figures :
If the two circles
M and N are touching
at A (the point of tangency),

the straight line L is a common tangent to them at A

, then $\mathrm{A} \in \overleftrightarrow{\mathrm{MN}}$ and $\overleftrightarrow{\mathrm{MN}} \perp$ the straight line L

Corollary (2)

The line of centres of two intersecting circles is perpendicular to the common chord and bisects it.

In the opposite figure :

If M and N are two circles intersecting at A and B, then $\overleftrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{MN}}$ bisects $\overline{\mathrm{AB}}$ i.e. $\mathrm{AC}=\mathrm{BC}$

This mean that $\overleftrightarrow{M N}$ is the axis of symmetry of $\overrightarrow{\mathrm{AB}}$

[A] Essay problems :-

In the opposite figure :
M and N are two circles touching at A ,
1 the distance between their centres $\mathrm{MN}=12 \mathrm{~cm}$.
If $\mathrm{NB}=7 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{MA}}$
(Kaft El-Sheikh 06) « 5 cm .»

$\mathbb{1}$ In the opposite figure :

M and N are two circles with radii lengths of 10 cm . and 6 cm . respectively and they are touching internally at A,
2
$\overleftrightarrow{A B}$ is a common tangent for both.
If the area of $\triangle \mathrm{BMN}=24 \mathrm{~cm}^{2}$.
Find : The length of $\overline{\mathrm{AB}}$

(El-Kalyoubia 18 , Luxor 16, Port Said 14) 《 12 cm .»
\mathfrak{m} In the opposite figure :
M and N are two intersecting circles at A and B ,
$3 \mathrm{C} \in \overrightarrow{\mathrm{BA}}, \mathrm{D} \in$ the circle N ,
$\mathrm{m}(\angle \mathrm{MND})=125^{\circ}$ and $\mathrm{m}(\angle \mathrm{BCD})=55^{\circ}$
Prove that : $\overleftrightarrow{C D}$ is a tangent to circle N at D

(Red Sea 19, Kafr El-Sheikh 17, Souhag 15)

In the opposite figure :
M and N are two intersecting circles at A and B ,
C is the midpoint of $\overline{\mathrm{XY}}, \mathrm{m}(\angle \mathrm{D})=40^{\circ}$,
$\overleftrightarrow{\mathrm{FZ}}$ is a tangent to the circle N at F where $\overleftrightarrow{\mathrm{MN}} \cap \overleftrightarrow{\mathrm{FZ}}=\{\mathrm{F}\}$
1 Find:m($\angle \mathrm{CME}$)
« 140° "
(2) Prove that : $\overleftrightarrow{\mathrm{FZ}} / / \overrightarrow{\mathrm{AB}}$

(El-Fayoum 11)

In the opposite figure :
Two congruent circles M and N are intersecting at A and B If $\mathrm{MA}=10 \mathrm{~cm} ., \mathrm{AB}=12 \mathrm{~cm}$.

Find by proof : The length of $\overline{\mathrm{MN}}$
(El-Menia 17) « 16 cm .»

M and N are two intersecting circles at A and $B, M A=12 \mathrm{~cm}, N A=9 \mathrm{~cm}$. and
$6 \quad \mathrm{MN}=15 \mathrm{~cm}$.
Find : The length of $\overline{\mathrm{AB}}$

In the opposite figure :
M and N are two intersecting circles at A and B
7 where C is a point on the circle M ,
D is a point on the circle $N, C \in \overleftrightarrow{M N}, D \in \overleftrightarrow{M N}$
Prove that : $\mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{CBD})$

(El-Sharkia 15)

If $M(3,5)$ and $N(-3,-7)$ are the two centres of two circles whose radii lengths are
$84 \sqrt{5}$ length units and $2 \sqrt{5}$ length units respectively, $\mathrm{A}(-1,-3)$
Prove that : The two circles are touching at A showing the kind of tangency.
(Helwan 09)

[B] Choose the correct :-

M and N are two circles touching internally, their radii lengths are 3 cm . and 5 cm ., then $\mathrm{MN}=\ldots \ldots \ldots . \mathrm{cm}$.
(Beni Suef 17 , El-Gharbia 15)
(a) 8
(b) 6
(c) 4
(d) 2

M and N are two circles touching externally, if their radii lengths are 4 cm . and 2 cm .
2 , then $\mathrm{MN}=$ cm .
(Cairo 15)
(a) zero
(b) 2
(c) 6
(d) 7

M and N are two circles of radii lengths are 9 cm . and 4 cm . respectively, $\mathrm{MN}=5 \mathrm{~cm}$., then the two circles are
(El-Dakahlia 17, El-Gharbia 14)
(a) touching externally.
(b) touching internally.
(c) intersecting.
(d) distant.

M and N are two circles, their radii lengths are 8 cm . and 3 cm ., if $\mathrm{MN}=11 \mathrm{~cm}$., then the two circles M and N are
(El-Menia 13)
4
(a) distant.
(b) concentric.
(c) intersecting.
(d) touching externally.
M and N are two circles, their radii lengths are 4 cm . and 3 cm . If $M N=9 \mathrm{~cm}$., then the two circles are
(Port Said 09)
(a) distant.
(b) intersecting.
(c) touching.
(d) one is inside the other.

If the radii lengths of the two circles M and N are $6 \mathrm{~cm} ., 3 \mathrm{~cm}$., if $\mathrm{MN}=2 \mathrm{~cm}$.
6 , then the two circles M, N are \qquad (El-Dakahlia 18)
(a) intersecting.
(b) one is inside the other.
(c) touching externally.
(d) distant.

If the radius length of the circle $M=3 \mathrm{~cm}$. and the radius length of the circle $N=5 \mathrm{~cm}$. , $\mathrm{MN}=6 \mathrm{~cm}$., then the two circles M and N are
(El-Gharbia 08)
(a) distant.
(b) one is inside the other.
(c) intersecting.
(d) touching externally.

M and N are two intersecting circles their radii lengths are 3 cm . and 5 cm .
8 respectively, then $M N \in$
(Alexandria 16 , Cairo 16 , Suez 11)
(a) $] 0,2[$
(b) $] 2,8[$
(c) $] 8, \infty[$
(d) $] 2, \infty[$

Two circles M and N with radii lengths 8 cm . and 5 cm , respectively, are touching $9 \quad$ when $\mathrm{MN} \in$
(El-Dakahlia 16)
(a) $] 13,3[$
(b) $] 3,13[$
(c) $\mathbb{R}-[3,13]$
(d) $\{13,3\}$
M and N are two intersecting circles at A and B, then the axis of symmetry of $\overline{A B}$
10 is
(El-Monofia 04)
(a) $\overline{\mathrm{MN}}$
(b) $\overrightarrow{\mathrm{NM}}$
(c) $\overleftrightarrow{M N}$
(d) $\overrightarrow{\mathrm{MN}}$

If the radius length of the circle $M=$ the radius length of the circle $N=M N$, then the two circles are
(Alexandria 05)
(a) one is inside the other.
(b) touching externally.
(c) distant.
(d) intersecting.

If the two circles M and N are touching internally, the radius length of one of them is 3 cm . and $\mathrm{MN}=8 \mathrm{~cm}$. then the radius length of the other circle $=$ \qquad cm .
(Giza 17)
(a) 12
(b) 11
(c) 6
(d) 5
M and N are two touching circles where $M N=6 \mathrm{~cm}$., the radius length of the greater circle is 10 cm ., then the radius length of the smaller circle $=$ cm .
(El-Sharkia 05)
(a) 16
(b) 12
(c) 8
(d) 4
M, N and L are three circles touching externally two-by-two, their radii lengths are 5 cm .,
14 6 cm . and 4 cm ., then the perimeter of the triangle $\mathrm{MNL}=$ cm. (El-Monofia 1I)
(a) 15
(b) 30
(c) 4
(d) 60

If the two circles M and N are touching externally, the radius length of the circle M is 4 cm ., if $\mathrm{MN}=7 \mathrm{~cm}$., then the circumference of the circle N is $\ldots \ldots . . \mathrm{cm}$.
(Et-Monofia 16)
(a) 4π
(b) 6π
(c) 7π
(d) π

A circle M of radius length 4 cm . touches a circle N internally, $M N=7 \mathrm{~cm}$., then the circumference of the circle M : the circumference of the circle $N=$ (El-Dakahlia 09)
(a) $4: 7$
(b) $3: 4$
(c) $4: 3$
(d) $4: 11$

Solutions

A	Essay Problems
1	$\begin{aligned} & \because M N=M A+N A \\ & \because N A=N B=7 \mathrm{~cm} . \text { (lengths of two radii) } \\ & \therefore 12=M A+7 \quad \therefore M A=5 \mathrm{~cm} . \end{aligned}$ (The req.)
2	\because The two circles are touching internally at A $\therefore \mathrm{MN}=10-6=4 \mathrm{~cm}, \overleftrightarrow{\mathrm{MN}} \perp \overleftrightarrow{\mathrm{AB}}$ \therefore The area of $\triangle B M N=\frac{1}{2} \times M N \times A B$ $\therefore 24=\frac{1}{2} \times 4 \times \mathrm{AB} \quad \therefore \mathrm{AB}=12 \mathrm{~cm}$. (The req.)
3	$\because \overleftrightarrow{\mathrm{MN}}$ is the line of centres, $\overline{\mathrm{AB}}$ is the common chord $\therefore \overline{\mathrm{AB}} \perp \overline{\mathrm{MN}} \quad \therefore \mathrm{~m}(\angle \mathrm{AEN})=90^{\circ}$ \because The sum of the measures of the interior angles of the quadrilateral $\mathrm{CDNE}=360^{\circ}$ $\begin{aligned} & \therefore \mathrm{m}(\angle \mathrm{CDN})=360^{\circ}-\left(55^{\circ}+125^{\circ}+90^{\circ}\right)=90^{\circ} \\ & \therefore \overrightarrow{\mathrm{ND}} \perp \stackrel{\mathrm{CD}}{ } \end{aligned}$ $\therefore \stackrel{\mathrm{CD}}{ }$ is a tangent to the circle N at D
4	$\because \overrightarrow{\mathrm{NM}}$ is the line of centres, $\overline{\mathrm{AB}}$ is the common chord $\therefore \overrightarrow{\mathrm{MN}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{m}(\angle \mathrm{AEM})=90^{\circ}$,$\because \mathrm{C}$ is the midpoint of $\overline{\mathrm{XY}}$ $\therefore \overline{\mathrm{MC}} \perp \overline{\mathrm{XY}}$ $\Rightarrow(\angle M C X)=90^{\circ}$ In the quadrilateral DCME: $\mathrm{m}(\angle \mathrm{CME})=360^{\circ}-\left(90^{\circ}+90^{\circ}+40^{\circ}\right)=140^{\circ}$,$\because \overleftrightarrow{\mathrm{FZ}}$ is a tangent to the circle N at F $\therefore \overline{\mathrm{NF}} \perp \overrightarrow{\mathrm{FZ}}$ $\therefore \mathrm{m}(\angle \mathrm{NFZ})=90^{\circ}$ $\therefore \mathrm{m}(\angle \mathrm{MEA})=\mathrm{m}(\angle \mathrm{NFZ})$ and they are cofresponding angles $\therefore \overrightarrow{\mathrm{FZ}} / / \overrightarrow{\mathrm{AB}}$ (Second req.)
5	$\because \overrightarrow{\mathrm{MN}}$ is the line of centres, $\overline{\mathrm{AB}}$ is the common chord of the two circles $\therefore \overrightarrow{\mathrm{MN}} \perp \overline{\mathrm{AB}} \quad, \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \mathrm{AC}=\frac{1}{2} \times 12=6 \mathrm{~cm}$ $\therefore M C=\sqrt{(A M)^{2}-(A C)^{2}}=\sqrt{100-36}=8 \mathrm{~cm}$ In $\triangle \mathrm{AMN}$:

	$\because \mathrm{AM}=\mathrm{AN}=\mathrm{r} \quad, \overline{\mathrm{AC}} \perp \overline{\mathrm{MN}}$ $\therefore \mathrm{C}$ is the midpoint of $\overline{\mathrm{MN}}$ $\therefore \mathrm{MN}=2 \mathrm{MC}=2 \times 8=16 \mathrm{~cm} .$ (The req.)
6	$\because \overleftrightarrow{\mathrm{MN}}$ is the line of centres, $\overline{\mathrm{AB}}$ is the common chord of the two circles $\therefore \stackrel{M \mathrm{~N}}{\mathrm{MB}}, \overline{\mathrm{AC}}=\mathrm{CB}$ In $\triangle \mathrm{AMN}:(\mathrm{AN})^{2}=81$ $\begin{aligned} & ,(\mathrm{AM})^{2}=144,(\mathrm{MN})^{2}=225 \\ & \therefore(\mathrm{MN})^{2}=(\mathrm{AM})^{2}+(\mathrm{AN})^{2} \end{aligned}$ $\therefore \triangle A M N$ is right-angled at $\mathrm{A}, \because \overline{\mathrm{AC}} \perp \overline{\mathrm{MN}}$ $A C=\frac{A M \times A N}{M N}=\frac{12 \times 9}{15}=7.2 \mathrm{~cm} \text {. }$ $\therefore \mathrm{AB}=2 \mathrm{AC}=14.4 \mathrm{~cm}$. (The req.)
7	$\begin{align*} & \because \overrightarrow{\mathrm{MN}} \text { is the line of centres } \\ & , \overline{\mathrm{AB}} \text { is the comnon chord } \\ & \therefore \overline{\mathrm{MN}} \text { is the axis of symmetry of } \overline{\mathrm{AB}} \\ & \therefore \mathrm{CA}=\mathrm{CB} \\ & \therefore \text { In } \triangle \mathrm{ABC}: \mathrm{m}(\angle \mathrm{CAB})=\mathrm{m}(\angle \mathrm{CBA}) \tag{1}\\ & , \because \mathrm{DA}=\mathrm{DB} \\ & \therefore \text { In } \triangle \mathrm{ABD}: \mathrm{m}(\angle \mathrm{DAB})=\mathrm{m}(\angle \mathrm{DBA}) \tag{2} \end{align*}$ By adding (1), (2) : $\therefore \mathrm{m}(\angle \mathrm{CAD})=\mathrm{m}(\angle \mathrm{CBD})$ (Q.E.D.)
8	$\begin{aligned} \because \text { MA } & =\sqrt{(3+1)^{2}+(5+3)^{2}}=\sqrt{16+64} \\ & =4 \sqrt{5} \text { length unit } \end{aligned}$ $\therefore \mathrm{A} \in$ the circle M $\begin{aligned} \because \mathrm{NA} & =\sqrt{(-3+1)^{2}+(-7+3)^{2}}=\sqrt{4+16} \\ & =2 \sqrt{5} \text { length units } \end{aligned}$ $\therefore A \in$ the circle N $\begin{aligned} \because \mathrm{MN} & =\sqrt{(3+3)^{2}+(5+7)^{2}}=\sqrt{36+144} \\ & =\sqrt{180}=6 \sqrt{5} \text { length units } \\ \therefore \mathrm{MN} & =\mathrm{MA}+\mathrm{NA} \end{aligned}$ \therefore The two circles are touching externally. (Q.E.D.)

B	Choose
1	D
2	C
3	B
4	D
5	A
6	B
7	C
8	B
9	D
10	C
11	D
12	B
13	D
14	B
15	B

Prep [3] - Second Term - Geometry - Unit [4] - The Circle

Lesson [4]: Identifying The Circle

The circle is identified if we know :
1 its centre.
2 its radius length.

In the following, we will study the possibility of identifying (drawing) the circle under certain conditions.

First Drawing a circle passing through a given point

We can draw an infinite number of circles passing through a given point.

Second Drawing a circle passing through two given points

There is an infinite number of circles that can be drawn to pass through the two points A and B and all their centres lie on the axis of symmetry of $\overline{A B}$

ce Remarks

- If $\overline{\mathrm{AB}}$ is a line segment and the required is drawing a circle passing through the two points A and B, then :
(1) If $r>\frac{1}{2} A B$, then we can draw two circles (as shown in the previous example).
(2) If $r=\frac{1}{2} A B$, then we can draw one and only one circle (it is the smallest circle) passing through the two points A and B, hence $\overline{\mathrm{AB}}$ is a diameter of it and its centre is the midpoint of $\overline{\mathrm{AB}}$
(3) If $r<\frac{1}{2} A B$, then it is impossible to draw any circle.
- Any two circles do not intersect at more than two points.

Third Drawing a circle passing through three given points

If A, B and C are three points in the plane and the required is drawing a circle passing through the three points A, B and C :
Then we must distinguish between two cases:
1 If the points A, B and C are collinear as in figure (1) , then the two straight lines L_{1} and L_{2} are parallel not intersecting.

In this case, it is impossible to draw a circle passing through the three points A, B and C

Fig (1) i.e.

It is impossible to draw a circle passing through three collinear points.
2 If the points A, B and C are not collinear as in figure (2), then L_{1} and L_{2} intersect at one point as M, then M is the centre of the required circle which passes through the three points A, B and C , then the radius length of this circle $=\mathrm{MA}=\mathrm{MB}=\mathrm{MC}$
i.e.

Fig (2)

For any three non-collinear points, there is a unique circle can be drawn to pass through them.

Notice that :

There is a unique circle passing through three points as A, B and C which are not collinear and the centre of this circle is the point of intersection of any two axes of symmetry of the axes of the line segments $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$

Corollary (1

The circle which passes through the vertices of a triangle is called the circumcircle of this triangle.

- The triangle whose vertices lie on a circle is called the inscribed triangle of this circle.

In the opposite figure :
M is the circumcircle of $\triangle A B C$ or $\triangle \mathrm{ABC}$ is the inscribed triangle of the circle M

Corollary (2)

The perpendicular bisectors of the sides of a triangle intersect at a point which is the centre of the circumcircle of the triangle.

In the opposite figure :
If the straight lines L_{1}, L_{2} and L_{3}
are the axes of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{CA}}$ respectively
and $L_{1} \cap L_{2} \cap L_{3}=\{M\}$,
then the point M is the centre of the circumcircle of $\triangle \mathrm{ABC}$

(e Remark

The position of the centre of the circumcircle of the triangle as \mathbf{M} differs according to the type of the triangle as shown in the following table :
The acute-angled triangle The right-angled triangle The obtuse-angled triangle

- A special case :

The centre of the circumcircle of the equilateral triangle is :

- The point of intersection of its sides axes.
- The point of intersection of its altitudes.
- The point of intersection of its medians.

- The point of intersection of the bisectors of its interior angles.

(e Remark

We can draw a circle passing through the vertices of (the rectangle, the square or the isosceles trapezium) while we cannot draw a circle passing through the vertices of (the parallelogram, the rhombus or the trapezium which is not isosceles).

Zx

[A] Essay problems :-

If $A \in L$, draw the circle M passing through A and its radius length $=3 \mathrm{~cm}$. if :
$1.1 \mathrm{M} \in$ the straight line L , how many circles can be drawn?
(2) $\mathrm{M} \notin$ the straight line L , how many circles can be drawn ?
(Assiut 11)
A and B are two points where $A B=6 \mathrm{~cm}$. Draw a circle of radius length 5 cm . and passes through the two points A and B
2 Find:
1 The number of circles can be drawn.
(2) The distance of the centre of the circle from $\overline{\mathrm{AB}}$ by proof. (Damietta 17) 44 cm .»
$\overline{\mathrm{AB}}$ is a line segment of length 6 cm . Draw the circle that passes through the two points A and B and its radius length is the smallest length.
(Luxor 05)
Using the geometric tools and draw $\overline{\mathrm{AB}}$ with length 6 cm ., then draw $\overrightarrow{\mathrm{AC}}$
4 where $\mathrm{m}(\angle \mathrm{CAB})=60^{\circ}$, draw the circle that passes through the points A, B and its centre lies on $\overrightarrow{\mathrm{AC}}$ and calculate the length of its radius (Don't remove the arcs). (El-Dakahlia 17) $« 6 \mathrm{~cm}$.»

5 Draw a circle with radius length of 3 cm . a
(Giza 06)
Draw the right-angled triangle ABC at B where $\mathrm{AB}=4 \mathrm{~cm}$. and $\mathrm{BC}=3 \mathrm{~cm}$., then draw the circumcircle of this triangle. Where does the centre of the circle lie with respect to the sides of this triangle?
(Damietta 18)
Using geometrical instruments, draw the isosceles triangle ABC in which
$7 \mathrm{~m}(\angle \mathrm{ABC})=120^{\circ}, \mathrm{BC}=4 \mathrm{~cm}$. Determine the centre of the circumcircle of it and find its radius length.
(El-Dakahlia 11) « $4 \mathrm{~cm} . »$
Draw $\triangle \mathrm{ABC}$ in which : $\mathrm{AB}=5 \mathrm{~cm} ., \mathrm{BC}=4 \mathrm{~cm}$, and $\mathrm{CA}=3 \mathrm{~cm}$. What is the type of the triangle with respect to the measures of its angles? then draw a circle whose centre is the point A and touches $\overleftrightarrow{\mathrm{BC}}$, another circle whose centre is B and touches $\overleftrightarrow{\mathrm{AC}}$ and a third circle whose centre is C and touches $\overleftrightarrow{\mathrm{AB}}$
(Beni Suef 06)

If $A(2,0)$ and $B(-2,3)$, draw a circle M of radius length 4 length units and passes through the two points A and B
How many solutions are there for this problem?

[B] Choose the correct : -

It is possible to draw
passing through a given point.
(a) one circle
(b) two circles
(c) three circles
(d) an infinite number of circles

The number of circles which passes through two given points is
(a) 1
(b) 2
(c) 3
(d) an infinite number.

The number of circles passing through three collinear points is
(a) zero
(b) one
(c) three
(d) an infinite number.

The number of circles passing through three non-collinear points is
(El-Menia 17)
(a) 1
(b) zero
(c) 2
(d) 3

We can identify the circle if we are given
(El-Sharkia 08)
5
(a) three collinear points.
(b) two points.
(c) three non-collinear points.
(d) one point.

The centres of the circles passing through the two points A and B lie on
(a) the axis of symmetry of $\overline{\mathrm{AB}}$
(b) $\overline{\mathrm{AB}}$
(c) the perpendicular to $\overline{\mathrm{AB}}$
(d) the midpoint of $\overline{\mathrm{AB}}$

The centre of the circumcircle of a triangle is the point of intersection of
(El-Fayoum 19 , Kafr El-Sheikh 17 , Qena 17)
(a) the bisectors of its interior angles.
(b) the bisectors of its exterior angles.
(c) its altitudes.
(d) the symmetry axes of its sides.

If $\triangle \mathrm{ABC}$ is right-angled at B , then the centre of its circumcircle is \qquad (Ismailia 03)
8 (a) the midpoint of $\overline{\mathrm{AB}}$
(b) the midpoint of $\overline{\mathrm{AC}}$
(c) the midpoint of $\overline{\mathrm{BC}}$
(d) outside the triangle.

It is (impossible) to draw a circle passing through the vertices of
(a) a rectangle.
(b) a triangle.
(c) a square.
(d) a rhombus.

It is possible to draw a circle passing through the vertices of
(El-Sharkia 19, Sowhag 18 , Gizq 17, Beni Suef 16)
(a) a rhombus.
(b) a rectangle.
(c) a trapezium.
(d) a parallelogram.

If $\overline{\mathrm{AB}}$ is a line segment of length 4 cm ., then the radius length of the smallest circle which passes through the two points A and $\mathrm{B}=$ \qquad cm .
(El-Monofia 16)
(a) 2
(b) 3
(c) 4
(d) 5

If $A B=6 \mathrm{~cm}$., then the area of the smallest circle which passes through the two points
A and $\mathrm{B}=$ cm^{2}.
(El-Sharkia 15)
(a) 3π
(b) 6π
(c) 8π
(d) 9π

Solutions

A	Essay Problems
1	1. When $\mathrm{M} \in \mathrm{L}$ we can draw two circles (2) When $\mathrm{M} \notin \mathrm{L}$ we can draw an infinite number of circles
2	1 We can draw two circles (2) In $\triangle A M_{1} D$: $\because \overline{\mathrm{M}_{1} \mathrm{D}} \perp \overline{\mathrm{AB}}$ $\therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ $\begin{aligned} & \therefore \mathrm{AD}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 6=3 \mathrm{~cm} . \\ & , \because \mathrm{m}\left(\angle \mathrm{ADM}_{1}\right)^{2}=90^{\circ} \\ & \begin{aligned} \therefore \mathrm{M}_{1} \mathrm{D} & =\sqrt{\left(A M_{1}\right)^{2}-(\mathrm{AD})^{2}} \\ & =\sqrt{25-9}=4 \mathrm{~cm} . \end{aligned} \end{aligned}$ (The req.)
3	\because The radius length is the smallest $\therefore \mathrm{r}=3 \mathrm{~cm} .$
4	In $\triangle \mathrm{ADM}: \because \overline{\mathrm{AD}} \perp \overline{\mathrm{MD}}$ $\therefore \mathrm{D}$ is the midpoint of $\overline{\mathrm{AB}}$ $\begin{aligned} & \therefore \mathrm{AD}=\frac{1}{2} \mathrm{AB}=\frac{1}{2} \times 6=3 \mathrm{~cm} . \\ & \because \mathrm{m}(\angle \mathrm{ADM})=90^{\circ} \\ & , \mathrm{m}(\angle \mathrm{~A})=60^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{AMD})=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ} \\ & \therefore \mathrm{AM}=2 \mathrm{AD}=2 \times 3=6 \mathrm{~cm} . \end{aligned}$ (The req.)
5	There are an infinite number of circles whose centres lie on a straight line parallel to the straight line L at a distance 3 cm . from it.

6	The centre of the circle lies at the midpoint of the hypotenuse $\overline{\mathrm{AC}}$
7	In $\triangle A B C$: $\because A B=B C$ $\therefore \triangle A B C$ is an isosceles triangle ,$\because \overline{\mathrm{BM}} \perp \overline{\mathrm{AC}}$ $\therefore \overrightarrow{\mathrm{BM}}$ bisects $\angle \mathrm{ABC} \quad \therefore \mathrm{m}(\angle \mathrm{MBC})=60^{\circ}$, $\because \mathrm{MB}=\mathrm{MC}=\mathrm{r}$ $\therefore \triangle \mathrm{MBC}$ is an equilateral triangle $\therefore \mathrm{MB}=\mathrm{MC}=\mathrm{BC}=\mathrm{r}=4 \mathrm{~cm}$. (The req.)
8	The type of this triangle according to the measures of its angle is right-angled triangle at C
9	$\begin{aligned} \mathrm{AB} & =\sqrt{(2+2)^{2}+(0-3)^{2}} \\ & =\sqrt{16+9}=\sqrt{25} \\ & =5 \text { length units } \end{aligned}$ \therefore There are two solutions
B	Choose
1	D

2	D
3	A
4	A
5	C
6	A
7	D
8	B
9	D
10	B
11	A
12	D

Prep [3] - Second Term - Geometry - Unit [4] - The Circle

Lesson [5] : The Relation Between The Chords Of A Circle With Its Center

Fig. (1)

Fig. (2)

Fig. (3)

Using the ruler, you can check by yourself the truth of the following information :
$A B>C D$
, MX < MY
$\mathrm{AB}<\mathrm{CD}$
, $\mathrm{MX}>\mathrm{MY}$
$A B=C D$
, $\mathrm{MX}=\mathrm{MY}$

The relation between the chords of a circle and its centre :

Theorem

If chords of a circle are equal in length, then they are equidistant from the centre.
Given $\mid \mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
R.T.P.
$M X=M Y$
Construction Draw $\overline{\mathrm{MA}}$ and $\overline{\mathrm{MC}}$
Proof
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$
$\therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \mathrm{AX}=\frac{1}{2} \mathrm{AB}$
$\because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}} \quad \therefore \mathrm{Y}$ is the midpoint of $\overline{\mathrm{CD}}$
$\therefore \mathrm{CY}=\frac{1}{2} \mathrm{CD}$
$\because \mathrm{AB}=\mathrm{CD}$ (given) $\therefore \mathrm{AX}=\mathrm{CY}$
$\because \Delta \Delta \mathrm{AXM}$ and CYM, both have

$$
\left\{\begin{array}{l}
\mathrm{AX}=\mathrm{CY}(\text { by proof }) \\
\mathrm{MA}=\mathrm{MC}=\mathrm{r} \\
\mathrm{~m}(\angle \mathrm{AXM})=\mathrm{m}(\angle \mathrm{CYM})=90^{\circ} \tag{Q.E.D.}
\end{array}\right.
$$

$\therefore \triangle \mathrm{AXM} \equiv \triangle \mathrm{CYM}$, then we get $: \mathrm{MX}=\mathrm{MY}$

Corollary

In congruent circles, chords which are equal in length are equidistant from the centres.
In the opposite figure :
If M and N are two congruent circles,
$\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$, then $\mathrm{MX}=\mathrm{NY}$

Converse of the theorem

In the same circle (or in congruent circles), chords which are equidistant from the centre (s) are equal in length.
i.e. In the opposite figure :

If $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords of the circle M ,
$\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and $\mathrm{MX}=\mathrm{MY}$, then $\mathrm{AB}=\mathrm{CD}$

Also in the opposite figure :
If M and N are two congruent circles, $\overline{\mathrm{AB}}$ is a chord of circle M and $\overline{\mathrm{CD}}$ is a chord of circle N
$, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{NY}} \perp \overline{\mathrm{CD}}$ and
$M X=N Y$, then $A B=C D$

HMErafses

[A] Essay problems :-

In the opposite figure :
The triangle $A B C$ is an inscribed triangle inside a circle M,
$1 \mathrm{~m}(\angle \mathrm{~B})=\mathrm{m}(\angle \mathrm{C})$,
X is the midpoint of $\overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$

Prove that : MX $=\mathrm{MY}$
(Giza 19, El-Beheira 19 , Matrouh 17, Fayoum 15)

In the opposite figure :
M is a circle, $m(\angle A)=60^{\circ}$
, X is the midpoint of $\overline{\mathrm{AC}}$
, Y is the midpoint of $\overline{\mathrm{BC}}$
, $\mathrm{FX}=\mathrm{EY}$

Prove that : $\triangle \mathrm{ABC}$ is an equilateral triangle
(El-Sharkia 18)
In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M
, X is the midpoint of $\overline{\mathrm{AB}}$,
Y is the midpoint of $\overline{\mathrm{AC}}$ and $\mathrm{m}(\angle \mathrm{CAB})=70^{\circ}$
1 Calculate : $\mathrm{m}(\angle \mathrm{DME})$

(2) Prove that: $\mathrm{XD}=\mathrm{YE}$
$\square 1$ In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M
, X is the midpoint of $\overline{\mathrm{AB}}$,
$\overrightarrow{\mathrm{MX}}$ intersects the circle at $\mathrm{D}, \overrightarrow{\mathrm{MY}} \perp \overrightarrow{\mathrm{AC}}$
intersects it at Y and intersects the circle at E

Prove that : $1 \mathrm{XD}=\mathrm{YE} \quad 2 \mathrm{~m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{XYC})$ (Assiut 18 , El-Gharbia 13)
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords equal in length in the circle M, X and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively, $\mathrm{m}(\angle \mathrm{MXY})=30^{\circ}$
Prove that: $1 \triangle \mathrm{MXY}$ is an isosceles triangle.
(2) $\triangle \mathrm{AXY}$ is an equilateral triangle.
(New Valley 16)

In the opposite figure :

M and N are two circles intersecting at A and B ,$\overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$ and intersects $\overline{\mathrm{AC}}$ at X and intersects the circle M at $\mathrm{Y}, \overline{\mathrm{MN}}$ to intersects $\overline{\mathrm{AB}}$ at D and intersects the circle M at E , if $\mathrm{AC}=\mathrm{AB}$
Prove that : $\mathrm{XY}=\mathrm{DE}$

(El-Kalyoubia 18)
[1] $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords in the circle $\mathrm{M}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$, $\mathrm{m}(\angle \mathrm{ABC})=75^{\circ}, \mathrm{MX}=\mathrm{MY}$
$7 \quad 1$ Find : $m(\angle \mathrm{BAC})$
(2) Prove that : The perimeter of $\triangle \mathrm{AXY}=\frac{1}{2}$ the perimeter of $\triangle \mathrm{ABC}$

In the opposite figure :

Two concentric circles at $\mathrm{M}, \overline{\mathrm{AB}}$ is a chord in the greater circle and cuts the smaller circle at C and $\mathrm{D}, \overline{\mathrm{AZ}}$ is a chord in the greater circle and cuts the smaller circle at X and Y If $m(\angle A B Z)=m(\angle A Z B)$

Prove that : $\mathrm{CD}=\mathrm{XY}$

In the opposite figure

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords of the circle M , $\overrightarrow{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and intersects the circle at F ,
$\overrightarrow{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and intersects the circle at E,
$F X=E Y$

Prove that :
$1 \mathrm{AB}=\mathrm{CD}$
(2) $\mathrm{AF}=\mathrm{CE}$
(El-Gharbia 16 , Kafr El-Sheikh II)

In the opposite figure :

$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords of the circle M , equal in length X and Y are their midpoints respectively. If $\mathrm{m}(\angle \mathrm{XMY})=120^{\circ}, \overrightarrow{\mathrm{YZ}}$ bisects $\angle \mathrm{AYX}$

Prove that : $\overrightarrow{\mathrm{YZ}} / / \overleftrightarrow{\mathrm{MX}}$

\mathbb{C} In the opposite figure :

The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\{\mathrm{A}, \mathrm{B}\}, \overleftrightarrow{\mathrm{AB}} \cap \overleftrightarrow{\mathrm{MN}}=\{\mathrm{C}\}$, $\mathrm{D} \in \overleftrightarrow{\mathrm{MN}}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}$

Prove that : MX = MY

In the opposite figure :

The concentric circles of radii $4 \mathrm{~cm} ., 2 \mathrm{~cm}$.
$\triangle \mathrm{ABC}$ is drawn such that its vertices lie on the greater circle and its sides touch
 the smaller circle at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$

Prove that :

$\triangle \mathrm{ABC}$ is an equilateral friangle and find its area.
(El-Fayoum 19) « $12 \sqrt{3} \mathrm{~cm}^{2}$.»
In the opposite figure:
M, N are two intersecting circles at B, C
,$A \in \overleftrightarrow{M N}$
Prove that : $\mathrm{BD}=\mathrm{CE}$
(El-Dakahlia 17)

In the opposite figure :
$\overline{\mathrm{AB}}$ is a diameter of the circle $\mathrm{M}, \overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are two chords in it, $\mathrm{MX}=\mathrm{MY}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{DB}}$

Prove that:
$1 \triangle \mathrm{HAB}$ is isosceles triangle.

(2) $\mathrm{HC}=\mathrm{HD}$
(Beni Suef 12)

In the opposite figure :

$\triangle \mathrm{ABC}$ is inscribed in the circle M , $m(\angle \mathrm{BAC})=60^{\circ}, \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$,
Y is the midpoint of $\overline{\mathrm{AC}}$ and $\mathrm{MX}=\mathrm{MY}$
Prove that :

1 ABC is an equilateral triangle.
(2) $\overrightarrow{\mathrm{AM}} \perp \overrightarrow{\mathrm{BC}}$
(Giza 05)
In the opposite figure :
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords of the circle M , equal in length, X and Y are the two midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ respectively. $\overleftrightarrow{\mathrm{XY}}$ is drawn to cut the circle at E and $\mathrm{F}, \overline{\mathrm{ML}}$ is drawn $\perp \overleftrightarrow{\mathrm{XY}}$

(Cairo 03) Prove that : $\mathrm{XE}=\mathrm{YF}$

In the opposite figure :
M and N are two circles touching internally at A ,
$\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ are two chords drawn in the greater circle N such that they are equal in length to cut the smaller circle M at L and K respectively.
Prove that: AL = AK

(Dakahlia 09)

In the opposite figure :
M is a circle,$\overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
, $\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
, $\mathrm{A}(2,2), \mathrm{D}(1,0)$ and $\mathrm{E}(3,4)$
Prove that : $\mathrm{ME}=\mathrm{MD}$

(Kafr El-Sheikh 13)

In the opposite figure :

M and N are two circles of radii lengths 4 cm . and 5 cm .,$\overline{\mathrm{AC}}$ touches the circle M at A and cuts the circle N at B and C , where $\mathrm{BC}=6 \mathrm{~cm}$. and $\mathrm{MN}=12 \mathrm{~cm}$.

1 Prove that the quadrilateral MACN is a trapezium then calculate its area.
2. If $\mathrm{CD}=\mathrm{CB}$, find the distance between N and $\overline{\mathrm{CD}}$

Solutions

A	Essay Problems
1	$\begin{align*} & \text { In } \triangle \mathrm{ABC}: \because \mathrm{m}(\angle \mathrm{~B})=\mathrm{m}(\angle \mathrm{C}) \\ & \therefore \mathrm{AB}=\mathrm{AC} \\ & , \because \mathrm{X} \text { is the midpoint of } \overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \tag{1}\\ & , \because \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY} \text { (Q.E.D.) } \end{align*}$
2	$\begin{aligned} & \because \mathrm{MF}=\mathrm{ME} \text { (lengths of two radii) } \\ & \\ & , \mathrm{FX}=\mathrm{EY} \end{aligned}$ By subtracting : $\therefore \mathrm{MX}=\mathrm{MY}$,$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AC}} \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AC}}$,$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{BC}} \quad \therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{BC}}$ $\therefore \mathrm{AC}=\mathrm{BC} \quad, \because \mathrm{~m}(\angle \mathrm{~A})=60^{\circ}$ $\therefore \triangle \mathrm{ABC}$ is an equilateral triangle. (Q.E.D.)
3	$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}} \quad \therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$ \because The sum of measures of the interior angles of the quadrilateral $A X M Y=360^{\circ}$ $\therefore \mathrm{m}(\angle \mathrm{XMY})=360^{\circ}-\left(70^{\circ}+90^{\circ}+90^{\circ}\right)=110^{\circ}$ (First req.) $\because \mathrm{AB}=\mathrm{AC}$ $\therefore \mathrm{MX}=\mathrm{MY}$ $\because M D=$ ME (lengths of two radii) by subtracting $\therefore \mathrm{XD}=\mathrm{YE}$
4	$\begin{aligned} & \because \mathrm{X} \text { is the midpoint of } \overline{\mathrm{AB}} \quad \therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \\ & \because \mathrm{AB}=\mathrm{AC} \quad \therefore \mathrm{MX}=\mathrm{MY}, \\ & \because \mathrm{MD}=\mathrm{ME} \text { (lengths of two radii) by subtracting } \\ & \therefore \mathrm{XD}=\mathrm{YE} \\ & \text { In } \triangle \mathrm{XMY}: \because \mathrm{MX}=\mathrm{MY} \\ & \therefore \mathrm{~m}(\angle \mathrm{MXY})=\mathrm{m}(\angle \mathrm{MYX}) \\ & \because \mathrm{m}(\angle \mathrm{MXB})=\mathrm{m}(\angle \mathrm{MYC})=90^{\circ} \\ & \text { by adding } \therefore \mathrm{m}(\angle \mathrm{YXB})=\mathrm{m}(\angle \mathrm{XYC}) \quad \text { (Q.E.D. 1) } \\ & \text { (Q.E.D. } 2) \end{aligned}$
5	$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ $\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$ $\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$ $\because A B=A C$ $\therefore \mathrm{MX}=\mathrm{MY}$ $\therefore \triangle M X Y$ is an isosceles triangle (Q.E.D. 1) $\begin{aligned} & \because \mathrm{m}(\angle \mathrm{AXM})=90^{\circ}, \mathrm{m}(\angle \mathrm{MXY})=30^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{AXY})=90^{\circ}-30^{\circ}=60^{\circ} \end{aligned}$ $\because \mathrm{X}$ and Y are the midpoints of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$ $\therefore \mathrm{AX}=\mathrm{AY}$ $\therefore \triangle \mathrm{AXY}$ is an equilateral triangle (Q.E.D. 2)

6	$\begin{align*} & \because \overline{\mathrm{AB}} \text { is the common chord of the two circles } \mathrm{M}, \mathrm{~N} \\ & , \overrightarrow{\mathrm{MN}} \text { is the line of centres } \\ & \therefore \overrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}} \quad \therefore \overrightarrow{\mathrm{MD}} \perp \overrightarrow{\mathrm{AB}} \\ & \because \overrightarrow{\mathrm{MX}} \perp \overrightarrow{\mathrm{AC}} \quad, \quad, \mathrm{AC}=\mathrm{AB} \\ & \therefore \mathrm{MX}=\mathrm{MD} \\ & , \because \mathrm{MY}=\mathrm{ME} \text { (lengths of two radii) } \end{align*}$ Subtracting (i) from (2) : $\therefore \mathrm{XY}=\mathrm{DE}$
7	$\because \mathrm{Y}$ is the midpoint of $\overline{\mathrm{AC}}$ $\therefore \overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$, $\because \overline{M X} \perp \overline{\mathrm{AB}}, M X=M Y$ $\therefore A B=A C$ $A \mathrm{~m}(\angle \mathrm{C})=75^{\circ}$ 7. $\mathrm{m}(\angle \mathrm{A})=180^{\circ}-\left(75^{\circ}+75^{\circ}\right)=30^{\circ}$ (First req.) $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \ln \triangle \mathrm{ABC}$: $X Y=\frac{1}{2} B C, A X=\frac{1}{2} A B, A Y=\frac{1}{2} A C$ \therefore The perimeter of $\triangle \mathrm{AXY}$ $=\frac{1}{2} \text { The perimeter of } \triangle \mathrm{ABC}$ (Second req.)
8	Constr: : Draw : $\overline{\mathrm{MF}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AZ}}$ Proof: In the great circle : $\begin{aligned} & \because \mathrm{m}(\angle \mathrm{ABZ})=\mathrm{m}(\angle \mathrm{AZB}) \\ & \therefore \mathrm{AB}=\mathrm{AZ} \\ & \because \overline{\mathrm{MF}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AZ}} \quad \therefore \mathrm{MF}=\mathrm{ME} \end{aligned}$ In the small circle : $\begin{aligned} & \because \overline{\mathrm{MF}} \perp \overline{\mathrm{CD}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{XY}}, \mathrm{MF}=\mathrm{ME} \\ & \therefore \mathrm{CD}=\mathrm{XY} \end{aligned}$
9	$\begin{aligned} & \because \mathrm{MF}=\mathrm{ME} \text { (lengths of two radii) } \\ & , \mathrm{XF}=\mathrm{YE} \\ & \because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}} \therefore \mathrm{AB}=\mathrm{CD} \quad \text { (Q.E.D. 1) } \\ & \because \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}} \\ & \therefore \mathrm{X} \text { is the midpoint of } \overline{\mathrm{AB}} \therefore \mathrm{AX}=\frac{1}{2} \mathrm{AB} \\ & \because \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}} \\ & \therefore \mathrm{Y} \text { is the midpoint of } \overline{\mathrm{CD}} \therefore \mathrm{CY}=\frac{1}{2} \mathrm{CD} \\ & \because \mathrm{AB}=\mathrm{CD} \quad \therefore \mathrm{AX}=\mathrm{CY} \end{aligned}$

	$\therefore \triangle \mathrm{AXF}, \triangle \mathrm{CYE}$ In them $\left\{\begin{array}{l}A X=C Y \\ X F=Y E \\ m(\angle A X F)=m(\angle C Y E)=90^{\circ}\end{array}\right.$ $\therefore \triangle \mathrm{AXF} \equiv \triangle \mathrm{CYE}$ then we deduce that $\mathrm{AF}=\mathrm{CE}$ (Q.E.D. 2)
10	$\begin{align*} & \because \mathrm{Y} \text { is the midpoint of } \overline{\mathrm{AC}} \quad \therefore \overrightarrow{\mathrm{MY}} \perp \overrightarrow{\mathrm{AC}} \\ & \quad \text { Similarly } \overline{\mathrm{MX}} \perp \overrightarrow{\mathrm{AB}} \\ & \because \mathrm{AC}=\mathrm{AB} \\ & \\ & \text { and from } \triangle \mathrm{YMX}: \because \mathrm{m}(\angle \mathrm{M})=120^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{MYX})=\mathrm{m}(\angle \mathrm{YXM})=\frac{180^{\circ}-120^{\circ}}{2}=30^{\circ}(2) \\ & \\ & \quad \text { from }(1) \text { and }(2): \therefore \mathrm{m}(\angle \mathrm{AYX})=90^{\circ}-30^{\circ}=60^{\circ} \\ & \because \mathrm{YZ} \text { bisects } \angle \mathrm{AYX} \\ & \therefore \mathrm{~m}(\angle \mathrm{ZYX})=\frac{60^{\circ}}{2}=30^{\circ} \\ & \therefore \mathrm{m}(\angle \mathrm{ZYX})=\mathrm{m}(\angle \mathrm{YXM}) \tag{Q.E.D.}\\ & \quad \text { but they are alternate angles } \\ & \therefore \\ & \therefore \mathrm{YZ} / / \overrightarrow{\mathrm{MX}} \end{align*}$
11	\because The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\{\mathrm{A}, \mathrm{B}\}$ $\therefore \overrightarrow{\mathrm{MN}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$ \therefore In $\triangle \mathrm{ABD}: \overleftrightarrow{\mathrm{DC}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$ $\therefore \mathrm{AD}=\mathrm{BD}$ $\because \overline{\mathrm{MX}} \perp \overline{\mathrm{AD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BD}} \quad \therefore \mathrm{MX}=\mathrm{MY}$ (Q.E.D.)
12	Constr. : Draw $\overline{\mathrm{MX}}, \overline{\mathrm{MY}}, \overline{\mathrm{MZ}}, \overline{\mathrm{MA}}$ Proof: $\because \overleftrightarrow{A B}$ is a tangent to the smaller circle M $\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$, similary : $\overline{\mathrm{MY}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{MZ}} \perp \overline{\mathrm{AC}}$, $\because M X=M Y=M Z=r$ in the smaller circle $\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$ $\therefore \triangle \mathrm{ABC}$ is an equilateral triangle $\therefore \mathrm{m}(\angle B)=60^{\circ}$,\because the greater circle M is the circumcircle of $\triangle A B C$ $\therefore \mathrm{M}$ is the point of intersection of the altitudes of $\triangle \mathrm{ABC}$ $\therefore \overline{\mathrm{AY}}$ is an altitude in $\triangle \mathrm{ABC}$ \therefore In $\triangle A B Y$ which is right at $Y: \sin B=\frac{A Y}{A B}$, $\because \mathrm{AY}=\mathrm{AM}+\mathrm{MY}=4+2=6 \mathrm{~cm}$. $\therefore \sin 60^{\circ}=\frac{6}{A B} \quad \therefore \frac{\sqrt{3}}{2}=\frac{6}{A B}$ $\therefore A B=\frac{2 \times 6}{\sqrt{3}}=4 \sqrt{3} \mathrm{~cm} . \quad \therefore B C=A B=4 \sqrt{3} \mathrm{~cm}$. \therefore The area of $\triangle A B C=\frac{1}{2} \times B C \times A Y$ $=\frac{1}{2} \times 4 \sqrt{3} \times 6=12 \sqrt{3} \mathrm{~cm}^{2}$ (Second req.)

16	$\because \mathrm{X}$ is the midpoint of $\overline{\mathrm{AB}}$ $\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ similarly $\overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$, $\because A B=C D$ $\therefore \mathrm{MX}=\mathrm{MY}$ $\therefore \triangle M Y X$ is an isosceles triangle $\because \overline{\mathrm{ML}} \perp \overline{\mathrm{XY}}$ $\begin{equation*} \therefore \mathrm{XL}=\mathrm{LY} \tag{1} \end{equation*}$ $\because \overline{\mathrm{ML}} \perp$ the chord $\overline{\mathrm{EF}}$ $\therefore \mathrm{EL}=\mathrm{LF}$ subtracting (1) from (2) : $\therefore \mathrm{XE}=\mathrm{YF}$ (Q.E.D.)
17	Constr. : Draw : $\overline{\mathrm{NE}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{NF}} \perp \overline{\mathrm{AC}}$ $\overline{\mathrm{MX}} \perp \overline{\mathrm{AL}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AK}}$ Proof: $\because \overline{\mathrm{NE}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{NF}} \perp \overline{\mathrm{AC}}, \mathrm{AB}=\mathrm{AC}$ $\therefore \mathrm{NE}=\mathrm{NF}$ $\therefore \triangle \mathrm{ANE}$ and $\triangle \mathrm{ANF}$ which are right-angled $\text { In them }\left\{\begin{array}{l} \mathrm{NE}=\mathrm{NF} \\ \mathrm{AN} \text { is a common side } \end{array}\right.$ $\therefore \triangle \mathrm{ANE} \equiv \triangle \mathrm{ANF}$, then we deduce that $\begin{aligned} & \quad \mathrm{m}(\angle \mathrm{NAE})=\mathrm{m}(\angle \mathrm{NAF}) \\ & \therefore \triangle \mathrm{AMX}, \triangle \mathrm{AMY} \end{aligned}$ $\text { In them }\left\{\begin{array}{l} \overline{\mathrm{AM}} \text { is common side } \\ \mathrm{m}(\angle \mathrm{AXM})=\mathrm{m}(\angle \mathrm{AYM})=90^{\circ} \\ \mathrm{m}(\angle \mathrm{XAM})=\mathrm{m}(\angle \mathrm{YAM}) \text { (proved }) \end{array}\right.$ $\therefore \triangle \mathrm{AMX} \equiv \triangle \mathrm{AMY}$, then we deduce that $\mathrm{MX}=\mathrm{MY}$ $\overline{\mathrm{MX}} \perp \overline{\mathrm{AL}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{AK}}$ $\therefore \mathrm{AL}=\mathrm{AK}$ (Q.E.D.)
18	$\begin{aligned} & \because \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}} \quad \therefore \mathrm{D} \text { is the midpoint of } \overline{\mathrm{AB}}(1) \\ & \because \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}} \quad \therefore \mathrm{E} \text { is the midpoint of } \overline{\mathrm{AC}}(2) \\ & , \because \mathrm{AD}=\sqrt{(2-1)^{2}+(2-0)^{2}}=\sqrt{5} \text { length units } \\ & , \mathrm{AE}=\sqrt{(2-3)^{2}+(2-4)^{2}}=\sqrt{5} \text { length units } \\ & \therefore \mathrm{AD}=\mathrm{AE} \\ & \therefore \mathrm{ME}=\mathrm{MD} \end{aligned}$
19	Constr. : Draw : $\overline{\mathrm{NE}} \perp \overline{\mathrm{CB}}, \overline{\mathrm{NF}} \perp \overline{\mathrm{CD}}$ Proof: $\because \overline{\mathrm{NE}} \perp \overline{\mathrm{CB}}$ $\therefore \mathrm{E}$ is the midpoint of $\overline{\mathrm{CB}}$ In \triangle NEC which is right-angled at E $\begin{aligned} & \mathrm{NE}=\sqrt{(\mathrm{NC})^{2}-(\mathrm{CE})^{2}}=\sqrt{25-9}=4 \mathrm{~cm} . \\ & \therefore \mathrm{NE}=\mathrm{AM} \end{aligned}$ $\because \overleftrightarrow{\mathrm{AC}}$ is a tangent to the circle $\mathrm{M}, \overline{\mathrm{MA}}$ is a radius $\therefore \overline{\mathrm{MA}} \perp \overline{\mathrm{AC}}$

RULES OF ALGEBRA

Basic definitions and concepts on the circle

Corollary 1

The straight line passing through the centre of the circle and the midpoint of any chord of it (not passing through the centre) is perpendicular to this chord.

In the opposite figure :
If $\overline{\mathrm{AB}}$ is a chord of the circle M
and C is the midpoint of $\overline{\mathrm{AB}}$, then $\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$

Corollary (2)

The straight line passing through the centre of the circle and perpendicular to any chord of it bisects this chord.

In the opposite figure :
If $\overline{\mathrm{AB}}$ is a chord of the circle M and $\overleftrightarrow{\mathrm{MC}} \perp \overline{\mathrm{AB}}$, where $C \in \overline{\mathrm{AB}}$, then C
is the midpoint of $\overline{\mathrm{AB}}$

Corollary (3)
The perpendicular bisector to any chord of a circle passes through the centre of the circle.

In the opposite figure :

If $\overline{\mathrm{AB}}$ is a chord of the circle M, C is the midpoint of $\overline{\mathrm{AB}}$
and the straight line $L \perp \overline{\mathrm{AB}}$ from the point C , then $M \in$ the straight line L

From the previous corollary, we deduce that :

The axis of symmetry of any chord of a circle passes through its centre, so this axis is also an axis of symmetry of the circle.

The radius of the circle

It is a line segment with one endpoint at the centre of the circle and the other endpoint on the circle.
The diameter of the circle
It is a chord passing through the centre of the circle.

Position of a point and a straight line With respect to a circle

First Position of a point with respect to a given circle :

If M is a circle of radius length r and A is a point in its plane, then :

A is outside the circle M	A is on the circle M	A is inside the circle M
If $M A>r$	If $M A=r$	

Second Position of a straight line with respect to a circle :

If	Then	The figure	+ Note that
(1) $\mathrm{MA}>\mathrm{r}$	The straight line L lies outside the circle M		- $\mathrm{L} \cap$ the circle $\mathrm{M}=\varnothing$ - $L \cap$ the surface of the circle $\mathrm{M}=\varnothing$
(2) $\mathrm{MA}=\mathrm{r}$	The straight line L is a tangent to the circle M at A A is called "the point of tangency"		- $\mathrm{L} \cap$ the circle $\mathrm{M}=\{\mathrm{A}\}$ - $L \cap$ the surface of the circle $\mathrm{M}=\{\mathrm{A}\}$
(3) $\mathrm{MA}<\mathrm{r}$	The straight line L is a secant to the circle M		- $\mathrm{L} \cap$ the circle $\mathrm{M}=\{\mathrm{X}, \mathrm{Y}\}$ - $\mathrm{L} \cap$ the surface of the circle $\mathrm{M}=\overline{\mathrm{XY}}$ $\overline{\mathrm{XY}}$ is called the chord of intersection

Two important facts

1 The tangent to a circle is perpendicular to the radius drawn from the point of tangency.

i.e. if the straight line L is a tangent to the circle M at the point A ,
then $\overline{\mathrm{MA}} \perp \mathrm{L}$

The straight line which is perpendicular to the diameter of a circle at one of its endpoints is a tangent to the circle.

i.e. if $\overline{\mathrm{AB}}$ is a diameter of the circle M and the straight line $L \perp A B$ at the point A, then L is a tangent to the circle M at the point A

The two tangents which are drawn from the two endpoints of a diameter of a circle are parallel.

Position of a circle with respect to another circle

Let M and N be two circles, their radii lengths are r_{1} and r_{2} respectively, $r_{1}>r_{2}$

If	Then the two circles are	Note that
	Distant	- The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\varnothing$ - The surface of circle $M \cap$ the surface of circle $N=\varnothing$
	Touching externally	- The circle $M \cap$ the circle $N=\{A\}$ - The surface of circle $M \cap$ the surface of circle $N=\{A\}$
	Intersecting	- The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\{\mathrm{A}, \mathrm{B}\}$ - The surface of circle $M \cap$ the surface of circle N $=$ the surface of the yellow part.

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [4]

| Touching internally | - The circle $\mathrm{M} \cap$ the circle $\mathrm{N}=\{\mathrm{A}\}$
 - The surface of circle $\mathrm{M} \cap$ the surface of circle N
 = the surface of circle N |
| :--- | :--- | :--- |

Summary

Notes:

From the previous summary, we notice that :
1 If M and N are two distant circles, then : $M N \in] r_{1}+r_{2}, \infty[$
2 If M and N are two intersecting circles, then: $M N \in] r_{1}-r_{2}, r_{1}+r_{2}[$
3 If M and N (one of them is inside the other), then : $M N \in] 0, r_{1}-r_{2}[$

Corollary 1

The line of centres of two touching circles passes through the point of tangency and is perpendicular to the common tangent at this point.

In the two opposite figures :

If the two circles
M and N are touching at A (the point of tangency)

the straight line L is a common tangent to them at A then $A \in \overleftrightarrow{M N}$ and $\overleftrightarrow{M N} \perp$ the straight line L

Corollary (2)

The line of centres of two intersecting circles is perpendicular to the common chord and bisects it.

In the opposite figure :

If M and N are two circles intersecting at A and B , then $\overleftrightarrow{\mathrm{MN}} \perp \overrightarrow{\mathrm{AB}}, \overleftrightarrow{\mathrm{MN}}$ bisects $\overline{\mathrm{AB}}$ i.e. $\mathrm{AC}=\mathrm{BC}$
This mean that $\overleftrightarrow{\mathrm{MN}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$

LESSON [4] Identifying the circle

We know that the circle is identified if we know :
1 its centre
2 its radius length
In the following, we will study the possibility of identifying (drawing) the circle under certain conditions.

First Drawing a circle passing through a given point :

i.e. We can draw an infinite number of circles passing through a given point.

Second Drawing a circle passing through two given points :

i.e. There is an infinite number of circles that can be drawn to pass through the two points A and B and all their centres lie on the axis of symmetry of $\overline{\mathrm{AB}}$

Remarks

If $\overline{\mathrm{AB}}$ is a line segment and the required is drawing a circle passing through the two points A and B, then :
1 If $\mathrm{r}>\frac{1}{2} \mathrm{AB}$, then we can draw two circles (as shown in the previous example).
2 If $r=\frac{1}{2} \mathrm{AB}$, then we can draw one and only one circle (it is the smallest circle) passing through the two points A and B , hence $\overline{\mathrm{AB}}$ is a diameter of it and its centre is the midpoint of $\overline{\mathrm{AB}}$
3 If $\mathrm{r}<\frac{1}{2} \mathrm{AB}$, then it is impossible to draw any circle.

- Any two circles do not intersect at more than two points.

Third Drawing a circle passing through three given points :

i.e. It is impossible to draw a circle passing through three collinear points.

For any three non-collinear points, there is a unique circle

can be drawn to pass through them.

Notice that :

There is a unique circle passing through three points as A, B and C which are not collinear and the centre of this circle is the point of intersection of any two axes of symmetry of the axes of the line segments $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{AC}}$

Corollary 1

The circle which passes through the vertices of a triangle is called the circumcircle of this triangle.

- The triangle whose vertices lie on a circle is called the inscribed triangle of this circle.

In the opposite figure :

M is the circumcircle of $\triangle \mathrm{ABC}$
or $\triangle \mathrm{ABC}$ is the inscribed triangle of the circle M

Corollary 2

The perpendicular bisectors of the sides of a triangle intersect at a point which is the centre of the circumcircle of the triangle.

In the opposite figure :

If the straight lines L_{1}, L_{2} and L_{3} are the axes of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{CA}}$ respectively
and $\mathrm{L}_{1} \cap \mathrm{~L}_{2} \cap \mathrm{~L}_{3}=\{\mathrm{M}\}$,
then the point M is the centre of the circumcircle of $\triangle \mathrm{ABC}$

The position of the centre of the circumcircle of the triangle as M differs according to the type of the triangle as shown in the following table :

The acute-angled triangle	The right-angled triangle	The obtuse-angled triangle
M is inside the triangle	M is the midpoint of the hypotenuse	M is outside the triangle

A special case :

The centre of the circumcircle of an equilateral triangle is :

- The point of intersection of its sides axes.
- The point of intersection of its altitudes.
- The point of intersection of its medians.

- The point of intersection of the bisectors of its angles.

Notice that :

We can draw a circle passing through the vertices of (a rectangle or a square or an isosceles trapezium) while we cannot draw a circle passing through the vertices of (the parallelogram or the rhombus or the trapezium which is not isosceles).

The relation between the chords of a circle and its center

Theorem

If chords of a circle are equal in length, then they are equidistant from the centre.

Given	$\mathrm{AB}=\mathrm{CD}, \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$
R.T.P.	$\mathrm{MX}=\mathrm{MY}$
Construction	Draw $\overline{\mathrm{MA}}$ and $\overline{\mathrm{MC}}$

Corollary

In congruent circles, chords which are equal in length are equidistant from the centres.
Converse of the theorem (without proof) :
In the same circle (or in congruent circles),
chords which are equidistant from the centre (s) are equal in length.

i.e. In the opposite figure :

If $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords of the circle M ,
$\overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CD}}$ and $\mathrm{MX}=\mathrm{MY}$, then $\mathrm{AB}=\mathrm{CD}$

Central angles and measuring arcs

i.e.

The measure of the semicircle $=180^{\circ}$ and then the measure of the circle $=2 \times 180^{\circ}=360^{\circ}$

Remark

The two adjacent arcs are two arcs in the same circle that have only one point in common.

The length of the arc

It is a part of a circle's circumference proportional to its measure and it is measured by length units (centimetre, metre, ...)

- To calculate the length of the arc, you can use the following rule :

The length of the arc $=\frac{\text { the measure of the arc }}{\text { the measure of the circle }} \times$ the circumference of the circle

$$
=\frac{\text { the measure of the arc }}{360^{\circ}} \times 2 \pi \mathrm{r}
$$

Where r is the radius length of the circle and π is the approximated ratio.

Corollary 1

In the same circle (or in congruent circles), if the measures of arcs are equal, then the lengths of the arcs are equal and vice versa.

In the opposite figure :
If M is a circle in which $m(\overparen{A B})=m(\overparen{C D})$
, then the length of $\overparen{A B}=$ the length of $\overparen{C D}$
and vice versa if the length of $\overparen{A B}$
$=$ the length of $\overparen{C D}$, then $m(\overparen{A B})=m(\overparen{C D})$

Corollary 2

In the same circle (or in congruent circles), if the measures of arcs are equal, then their chords are equal in length, and vice versa.

In the opposite figure :

If M is a circle in which
$\mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CD}})$, then $\mathrm{AB}=\mathrm{CD}$ and vice versa
If $\mathrm{AB}=\mathrm{CD}$, then $\mathrm{m}(\overparen{\mathrm{AB}})=\mathrm{m}(\overparen{\mathrm{CD}})$

Corollary 3

If two parallel chords are drawn in a circle, then the measures of the two arcs between them are equal.

In the opposite figure :
If $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are two chords in the circle M
, $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$, then $\mathrm{m}(\overparen{\mathrm{AC}})=\mathrm{m}(\overparen{\mathrm{BD}})$

Corollary 4

If a chord is parallel to a tangent of a circle, then the measures of the two arcs between them are equal.

In the opposite figure :

If $\overline{\mathrm{AB}}$ is a chord in the circle M and
$\overleftrightarrow{\mathrm{CD}}$ touches the circle M at E ,
$\overleftrightarrow{\mathrm{CD}} / / \overline{\mathrm{AB}}$, then $\mathrm{m}(\overparen{\mathrm{EA}})=\mathrm{m}(\overparen{(\mathrm{EB}})$

The relation between the inscribed and Central angles subtended by the same arc theorem

The inscribed angle

It is the angle whose vertex lies on the circle and its sides contain two chords of the circle.

In the opposite figure :

- $\angle \mathrm{ABC}$ is an inscribed angle because its vertex B belongs to the circle M and its sides $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{BC}}$ carry the two chords $\overline{\mathrm{BA}}$ and $\overline{\mathrm{BC}}$ in the circle M
- The inscribed angle $\angle \mathrm{ABC}$ is subtended by $\overparen{A C}$

Remark

For each inscribed angle, there is one central angle subtended by the same arc.

In the opposite figure :

- The inscribed angle $\angle \mathrm{BAD}$ is subtended
with the central angle $\angle \mathrm{BMD}$ by the $\operatorname{arc} \overparen{\mathrm{BCD}}$
- While the inscribed angle $\angle \mathrm{BCD}$ is subtended

with the reflex central angle BMD by the arc $\widehat{\text { BAD }}$

Theorem (1)

The measure of the inscribed angle is half the measure of the central angle, subtended by the same arc.

Remark

The measure of the central angle equals twice the measure of the inscribed angle subtended by the same arc.

The corollaries of theorem (1) and its well known problems

Corollary (1)

The measure of an inscribed angle is half the measure of the subtended arc.
In the opposite figure :
$\mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB})$
(inscribed and central angles with common $\operatorname{arc} \overparen{A B}$),
$\mathrm{m}(\angle \mathrm{AMB})=\mathrm{m}(\widehat{\mathrm{AB}})$
$\therefore \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}})$

Remark

The measure of the arc equals twice the measure of the inscribed angle subtended by this arc.

Corollary 2 .

The inscribed angle in a semicircle is a right angle.
In the opposite figure :
$\because \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}})($ corollary 1$)$,
$\therefore \mathrm{m}(\widehat{\mathrm{AB}})=180^{\circ}$
$\therefore \mathrm{m}(\angle \mathrm{C})=90^{\circ}$

Remarks

1 The inscribed angle which is right angle is drawn in a semicircle.
2 The inscribed angle which is subtended by an arc of measure less than the measure of a semicircle is an acute angle.
3 The inscribed angle which is subtended by an arc of measure greater than the measure of a semicircle is an obtuse angle.

Well known problem (1)

If two chords intersect at a point inside a circle, then the measure of the included angle equals half of the sum of the two measures of the two opposite arcs.

Given
R.T.P.
$\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ are two chords in a circle intersecting at the point E
$1 \mathrm{~m}(\angle \mathrm{AEC})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{AC}})+\mathrm{m}(\overparen{\mathrm{BD}})]$
$2 \mathrm{~m}(\angle \mathrm{CEB})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{BC}})+\mathrm{m}(\overparen{\mathrm{AD}})]$

Well known problem (2)

If two rays carrying two chords in a circle are intersecting outside it, then the measure of their intersecting angle equals half of the measure of the major arc subtracted from it half of the measure of the minor arc in which both are included by the two sides of this angle.

Given

$$
\overrightarrow{\mathrm{CB}} \cap \overrightarrow{\mathrm{ED}}=\{\mathrm{A}\}
$$

$\mathrm{m}(\angle \mathrm{A})=\frac{1}{2}[\mathrm{~m}(\overparen{\mathrm{CE}})-\mathrm{m}(\overparen{\mathrm{BD}})]$

Inscribed angles subtended by same arc Theorem (2) its corollaries

Theorem 2

In the same circle, the measures of all inscribed angles subtended by the same arc are equal.
Given $\angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$ are inscribed angles subtended by $\overparen{\mathrm{AB}}$
R.T.P.

$$
\begin{align*}
& \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{E}) \\
& \because \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}}) \\
& , \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}}) \\
& , \mathrm{m}(\angle \mathrm{E})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}}) \\
& \therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{E}) \tag{Q.E.D.}
\end{align*}
$$

Proof

Corollary

In the same circle (or in any number of circles) the measures of the inscribed angles subtended by arcs of equal measures are equal.
i.e. In the circle M

If $m(\overparen{A B})=m(\overparen{C D})$,
then $m(\angle X)=m(\angle Y)$

The converse of the previous corollary is true also

i.e. In the same circle (or in any number of circles) the inscribed angles of equal measures subtend arcs of equal measures.

In the opposite figure :
If $m(\angle X)=m(\angle Y)$,
then $m(\widehat{\mathrm{AB}})=\mathrm{m}(\widehat{\mathrm{CD}})$

The cyclic quadrilateral-the converse of theorem (2)

The cyclic quadrilateral :
It is a quadrilateral figure whose four vertices belong to one circle.

The converse of theorem (2) (without proof)

If two angles subtended by the same base and on the same side of it have the same measure, then their vertices are on an arc of a circle and the base is a chord of it.

Remarks

1 If there are two angles drawn on one of the sides of a quadrilateral , they are on the same side of it and they are not equal in measure, then the quadrilateral is not cyclic.
2 Each of the rectangle, the square and the isosceles trapezium are cyclic quadrilaterals while each of the parallelogram, the rhombus and the trapezium that is not isosceles are not cyclic quadrilaterals.

Properties of The cyclic quadrilateral theorem (3)

Theorem (3)

In a cyclic quadrilateral, each two opposite angles are supplementary.
Given
R.T.P.

ABCD is a cyclic quadrilateral

$$
\begin{aligned}
& 1 \mathrm{~m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{C})=180^{\circ} \\
& \mathbf{2} \mathrm{m}(\angle \mathrm{~B})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}
\end{aligned}
$$

Proof

$$
\begin{align*}
&\left.\because \mathrm{m}(\angle \mathrm{~A})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{BCD}}) \text { and } \mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m} \overparen{(\mathrm{BAD}}\right) \\
& \because \mathrm{m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{C})=\frac{1}{2}[\mathrm{~m}(\widehat{\mathrm{BCD}})+\mathrm{m}(\widehat{\mathrm{BAD}})] \\
&=\frac{1}{2} \text { the measure of the circle }=\frac{1}{2} \times 360^{\circ}=180^{\circ} \tag{Q.E.D.}
\end{align*}
$$

Similarly: $m(\angle B)+m(\angle D)=180^{\circ}$

Corollary

The measure of the exterior angle at a vertex of a cyclic quadrilateral is equal to the measure of the interior angle at the opposite vertex.

In the opposite figure :
If ABCD is a cyclic quadrilateral
, $\angle \mathrm{CBE}$ is an exterior angle of it,
then $\mathrm{m}(\angle \mathrm{ABC})+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
but $\mathrm{m}(\angle \mathrm{ABC})+\mathrm{m}(\angle \mathrm{CBE})=180^{\circ}$

$\therefore \mathrm{m}(\angle \mathrm{CBE})=\mathrm{m}(\angle \mathrm{D})$

The converse of theorem (3) and its corollary

A summary of the cases in which the quadrilateral is cyclic:

The quadrilateral is cyclic if one of the following conditions is verified :
1 If there is a point in the plane of the figure such that it is equidistant from its vertices.
2 If there are two equal angles in measure and drawn on one of its sides as a base and on one side of this side.

3 If there are two opposite supplementary angles «their sum $=180^{\circ}$ »

4 If there is an exterior angle at any of its vertices equal in measure to the measure of the interior angle at the opposite vertex.

The relation between the tangents of a Circle theorem (4) and its corollaries

First The two tangents drawn at the two ends of a diameter in a circle are parallel.
i.e. In the opposite figure :

If $\overline{\mathrm{AB}}$ is a diameter in the circle M and the two straight lines L and K are two tangents to the circle at A and B respectively, then the straight line $\mathrm{L} / /$ the straight line K
 (because the straight line $L \perp \overline{\mathrm{AB}}$ and the straight line $\mathrm{K} \perp \overline{\mathrm{AB}}$)

Second

The two tangents drawn at the two ends of a chord of a circle are intersecting.
i.e. In the opposite figure :

If $\overline{\mathrm{AB}}$ is a chord in the circle M and the two straight lines L and K are two tangents to the circle at A and B respectively, then the two straight lines L and K are intersecting at a point outside the circle $\mathrm{M}($ Say C$)$ and $\overline{\mathrm{AC}}, \overline{\mathrm{BC}}$ are
 called tangent-segments and $\overline{\mathrm{AB}}$ is called a chord of tangency.

Theorem (4)

The two tangent-segments drawn to a circle from a point outside it are equal in length.

Corollaries of theorem (4) :

Corollary 1

The straight line passing through the centre of the circle and the intersection point of the two tangents is an axis of symmetry to the chord of tangency of those two tangents.

In the opposite figure :
If $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ are two tangents to the circle M at B and C respectively, then $\overleftrightarrow{\mathrm{AM}}$ is the axis of symmetry to $\overrightarrow{\mathrm{BC}}$
i.e. $\overleftrightarrow{\mathrm{AM}} \perp \overrightarrow{\mathrm{BC}}, \mathrm{BD}=\mathrm{CD}$

Corollary 2

The straight line passing through the centre of the circle and the intersection point of its two tangents bisects the angle between these two tangents. It also bisects the angle between the two radii passing through the two points of tangency.

In the opposite figure :

If $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ are two tangents to the circle M at B and C respectively then :

- $\overrightarrow{\mathrm{AM}}$ bisects $\angle \mathrm{BAC}$
$\therefore \mathrm{m}(\angle 1)=\mathrm{m}(\angle 2)$
- $\overrightarrow{\mathrm{MA}}$ bisects $\angle \mathrm{BMC}$

$$
\therefore \mathrm{m}(\angle 3)=\mathrm{m}(\angle 4)
$$

Remarks on theorem (4) and its corollaries

In the opposite figure :

$1 \mathrm{AB}=\mathrm{AC}$
$2 \mathrm{MB}=\mathrm{MC}=\mathrm{r}$
$3 \mathrm{BE}=\mathrm{CE}, \overleftrightarrow{\mathrm{AM}} \perp \overrightarrow{\mathrm{BC}}$
$4 \mathrm{~m}(\angle \mathrm{ABM})=\mathrm{m}(\angle \mathrm{ACM})=90^{\circ}$
i.e. The figure ABMC is a cyclic quadrilateral.

$5 \mathrm{~m}(\angle \mathrm{BAM})=\mathrm{m}(\angle \mathrm{BCM})=\mathrm{m}(\angle \mathrm{CAM})=\mathrm{m}(\angle \mathrm{CBM})$
$6 \mathrm{~m}(\angle \mathrm{AMB})=\mathrm{m}(\angle \mathrm{ACB})=\mathrm{m}(\angle \mathrm{AMC})=\mathrm{m}(\angle \mathrm{ABC})$

Definition

The inscribed circle of a polygon is the circle which touches all of its sides internally.

Fig. (1)

Fig. (2)

In figure (1): M_{1} is the inscribed circle of the triangle $A B C$ where :
the side $\overline{\mathrm{AB}}$ touches the circle at D , the side $\overline{\mathrm{BC}}$ touches the circle at E
and the side $\overline{\mathrm{CA}}$ touches the circle at F .
In figure (2): M_{2} is the inscribed circle of the quadrilateral $A B C D$

Remark

The centre of the inscribed circle of any triangle is the point of intersection of the bisectors of its interior angles.

i.e. In the opposite figure :

If the circle M is the inscribed circle of the triangle $A B C$ then M is the intersection point of the bisectors of the interior angles of $\triangle \mathrm{ABC}$

The common tangents to two circles

- It is said that the tangent $\overleftrightarrow{\mathrm{AB}}$ is an internal common tangent to the two circles M and N if the two circles M and N are on two different sides of the tangent.
- It is said that the tangent $\overleftrightarrow{\mathrm{AB}}$ is an external common tangent of the two circles M and N if the two circles M and N are on the same side of the tangent.
The following table shows the number of the common tangents to two circles in their different situations (locations) :
Two distant circles

Final Revision [Rules + Questions + Answers] Geometry ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [17]
Two intersecting circles

Angles of tangency theorem (5) and its corollaries

Definition

The angle of tangency is the angle which is composed of the union of two rays, one of them is a tangent to the circle and the other contains a chord of the circle passing through the point of tangency.

In the opposite figure :
If $\overleftrightarrow{A C}$ is a tangent to the circle at A and $\overrightarrow{A B}$ contains the chord $\overline{\mathrm{AB}}$, then $\angle B A C$ is an angle of tangency in the circle M, its chord is $\overline{\mathrm{AB}}$ $\overline{\mathrm{AB}}$ is called the chord of tangency of the angle of tangency $\angle \mathrm{BAC}$

i.e. The measure of the angle of tangency $=\frac{1}{2}$ the measure of the arc intercepted by its sides.

Theorem (5)

The measure of the angle of tangency is equal to the measure of the inscribed angle subtended by the same arc.

Given
$\angle \mathrm{BAC}$ is an angle of tangency and $\angle \mathrm{D}$ is an inscribed angle.
R.T.P.

$$
\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{D})
$$

Proof $\quad \because \angle \mathrm{BAC}$ is an angle of tangency.

$$
\begin{equation*}
\therefore \mathrm{m}(\angle \mathrm{BAC})=\frac{1}{2} \mathrm{~m}(\widehat{\mathrm{AB}}) \tag{1}
\end{equation*}
$$

,$\because \angle \mathrm{D}$ is an inscribed angle

$$
\begin{equation*}
\therefore \mathrm{m}(\angle \mathrm{D})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}}) \tag{2}
\end{equation*}
$$

From (1) and (2), we deduce that : $\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{D})$

Corollary

The measure of the angle of tangency is half the measure of the central angle subtended by the same arc.

In the opposite figure :

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{BAC})(\text { tangency angle })=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}}) \\
& , \because \mathrm{m}(\angle \mathrm{AMB})(\text { central angle })=\mathrm{m}(\overparen{\mathrm{AB}}) \\
& \therefore \mathrm{m}(\angle \mathrm{BAC}) \text { (tangency angle })=\frac{1}{2} \mathrm{~m}(\angle \mathrm{AMB}) \text { (central angle) }
\end{aligned}
$$

Remark

The angle of tangency is supplementary to the drawn inscribed angle on the chord of the angle of tangency and in one side of it.

If a ray is drawn from one end of a chord of a circle so that the angle between this ray and the chord is equal in measure to the inscribed angle subtended by the chord in the alternate side, then this ray is a tangent to the circle.

Questions Part (1)

Geometry

General Exercise on Unit One

First: Complete the following

1) If one end of a line segment lies on the center of the circle and the other end on the circle, then this line segment is called
2) If the two ends of a line segment lie on the circle, then this line segment is called
3) The chord which passes through the center of the circle is called
4) The longest chord of the circle is called \qquad
5) The circle has \qquad number of axes of symmetry.
6) In any circle the perpendicular straight line on any chord from its mid-point is to the circle.
7) The circle divides the plane into \qquad sets of points.
8) The perpendicular straight line on the diameter from one end is \qquad
9) The two tangents to a circle at the two end points of the diameter are \qquad
10) The equal chords in length of a circle are equidistant from \qquad
11) The chords of a circle are equidistant from its center are \qquad
12) If the point A lies outside the circle M of radius, then MA R.
13) The line of centers of two intersecting circles is \qquad
14) If the surface of the circle $M \cap$ the surface of the circle $N=\psi$, then the two circles M and N are.......
15) If the surface of the circle M ? the surface of the circle $N=\{A\}$, then the two circles M and N are \qquad
16) The number of circles can be drawn passing through two given points in the plane equals \qquad
17) If two circles have three common points, then they are \qquad
18) The radius of the smallest circle drawn to pass through two given points in the plane equals \qquad
19) The point of intersection of the symmetric axes of the sides of a triangle is \qquad
20) If M is a circle of radius r, A is apoint in the plane of the circle:
(a) If $M A=\frac{1}{2} R$, then A the circle
(b) If $M A=R$, then A the circle
(c) If $M A=3 R$, then A the circle

Second: Match from the column (X) to the column (Y) to get a true statement Two circles of radii $8 \mathrm{~cm} . \& 6 \mathrm{~cm}$.

\mathbf{X}	\mathbf{Y}
1) If $M N=1 \mathrm{~cm}$	a) M, N are two intersecting circles
2) If $M N=2 \mathrm{~cm}$	b) M, N are two distant circles
3) If $M N=7 \mathrm{~cm}$	c) M, N touching externally
4) If $M N=14 \mathrm{~cm}$	d) M, N are two interior circles
5) If $M N=15 \mathrm{~cm}$	e) M, N touching internally

Third : Choose the correct from the given ones :

1) If the length of a diameter of a circle is 7 cm , and the straight line L at distant 3.5 cm from its center, then L is \qquad
a) Secant to the circle at two points
b) Lies outside the circle.
c) Tangent to the circle
d) Axis of symmetry to the circle
2) If the point A belongs to the circle M of diameter 6 cm , then $M A$ equals
a) 3 cm
b) 4 cm
c) 5 cm
d) 6 cm
3) If the straight line L is a tangent to the circle M of diameter 8 cm , then the distance between L and its center equals
a) 3 cm
b) 4 cm
c) 6 cm
d) 8 cm
4) If the straight line L is outside a circle of radius 3 cm and its center M, If L at distance X from its center, then $x \in$
a) $] 3, \infty[$
b) $[3, \infty 1$
c) $16, \infty$ I
d) $1-\infty,-6[$
5) If the straight line L at distance x from a circle of center M and radius $R, x \in 10, R[$, then L
a) Intersects the circle
b) Touches the circle
c) Lies outside the circle
d) Passes through the center of the circel
6) If the length of the perpendicular drawn from the center of the circle on the straight line L equals 6 cm and the radius 6 cm , then $L \ldots \ldots \ldots .$.
a) Intersects the circle
b) Touches the circle
c) Lies outside the circle
d) Passes through the center of the circle

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [21]
7) Which of the following points does not belong to the circle that its center is the origin and its radius 7 cm ?
a) $(0,7)$
b) $(0,-7)$
c) $(7,0)$
d) $(7,7)$
8) If the surface of the circle $M \cap$ the surface of the circle $N=\{A\}$, then the two circles M and N are.......
a) Distant
b) Concentric
c) Touching externally
d) Intersecting
9) The number of circles can be drawn to pass through the end points of the line segment $\overline{\mathrm{AB}}$ equals
a) 1
b) 2
C) 3
d) an infinite number
10) If the circle $M \cap$ the circle $N=\{A, B\}$, then the two circles M and N are \qquad
a) Distant
b) Concentric
c) Touching externally
d) Intersecting
11) If the two circles M, N are touching externally, the radius of one of them 5 cm , and $\mathrm{MN}=9 \mathrm{~cm}$, then the radius of the other circle equals \qquad
a) 3 cm
b) 4 cm
c) 7 cm
d) 14 cm
12) If the two circles M, N are touching internally, the radius of one of them 3 cm , and $\mathrm{MN}=8 \mathrm{~cm}$, then the radius of the other circle equals \qquad
a) 5 cm
b) 6 cm
C) 11 cm
d) 12 cm
13) M and N are two intersecting circles their radii are $5 \mathrm{~cm}, 2 \mathrm{~cm}$, then $\mathrm{MN}=$ \qquad
a) $] 3,7[$
b) 13,7$]$
c) 13,71
d) $[3,7]$
14) The number of circles that pass through three collinear points equals \qquad
a) zero
b) One
c) Three
d) An infinte number
15) The symmetric axis of the common chord $\overline{A B}$ to the two intersecting circles M, N is
a) $\overrightarrow{M A}$
b) $\widehat{M B}$
c) $\overparen{M N}$
d) $\overline{\mathrm{NA}}$
16) The centers of the circles which pass through the two points A, B lie on
a) The axis of $\overline{A B}$
b) $\overline{A B}$
c) The perpendicular to $\overline{A B}$
d) The perpendicular on $\overline{A B}$ at B
17) Number of the circles which pass through three non collinear points equals
a) zero
b) one
c) two
d) three
18) The center of the circumcircle of any triangle is the point of intersection of its
a) Interior bisectors of its angles
b) Exterior bisectors of its angles
c) its heights
d) The symmetric axis of its sides
19) If the two points A, B lie on a plane $A B=4 \mathrm{~cm}$, then the length of the radius of the smallest circle passes through A and B equals.
a) 2 cm
b) 3 cm
C) 4 cm
d) 8 cm
20) If the two points A, B lie on a plane, $\mathrm{AB}=6 \mathrm{~cm}$, then the number of circles each of them has a radius of 5 cm and passes through A and B equals \qquad
a) zero
b) 1
c) 2
d) an infinite number

Fourth: Answer the following questions

1) In the opposite figure
$A B C$ is a triangle in a circle of center M,
$\overline{M D} \perp \overline{A C}, \overline{M E} \perp \overline{A B}$ and
$\mathrm{BC}=8 \mathrm{~cm}$ Find DH

2) In the opposite figure
M circle of center M, its radius of length 13 cm , $\overline{A B}$ is a chord of length $24 \mathrm{~cm}, C$ is the mid point of $\overline{A B}, \overline{M C}$ cuts the circle at D. Find :
[1] The length of $\overline{M C}$
[2] the area of $\triangle \mathrm{ADB}$

D
3) In the opposite figure

A circle of circumference $44 \mathrm{~cm}, \overline{\mathrm{AB}}$ is a diameter $\stackrel{B C}{ }$ is a tangent at B, and $m(\angle C)=60^{\circ}$.
Find the length of $\overline{\mathrm{BC}} \quad\left(\pi=\frac{22}{7}\right)$

4) In the opposite figure
M, N are two intersecting circles, $\overline{M N}$ intersects the circle M at $C, \overline{C A}$ is a tangent to the circle M at C, and cuts the circle N at A, B Prove that :
[1] $\mathrm{CA}=\mathrm{CB}$
[2] $\mathrm{MA}=\mathrm{MB}$

5) In the opposite figure
M, N are two intersecting circles, $\overline{\mathrm{CD}}$ is a chord in the circle M, cuts $\overparen{M N}$ at E, if E is the mid point of $\overline{\mathrm{CD}}$ Prove that : $\overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$

6) M, N are two touching internally circles at A, the circle M is greater than the circle N, draw the common tangent $\overrightarrow{A C}$, then draw $\stackrel{\rightharpoonup N}{M}$ to cut the circle N at B, and draw the tangent $\overleftrightarrow{B D}$ to the circle N to cut the circle M at D, E Prove that:
[1] $\stackrel{\rightharpoonup}{\mathrm{AC}} / / \stackrel{\rightharpoonup}{\mathrm{BD}}$
[2] $B D=B E$.
7) In the opposite figure
M, N are two congruent circles, $\overline{\mathrm{AC}}$ is a common tangent to the circle M at A the, $\overline{\mathrm{DF}}$ is a common tangent to the circle N at D , $\overline{\mathrm{AC}} / / \overline{\mathrm{DF}}$. Prove that :

[1] $\mathrm{BC}=\mathrm{FE}$
[2] $A B=E D$

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [24]
8) In the opposite figure
$\overline{A B}, \overline{C D}$ are two chords (equal in length) in a circle M. If X, Y are the two mid points of $\overline{\mathrm{AB}}, \overline{\mathrm{AC}}$ respectively, $\widehat{X Y}$ cuts the circle at E and F. Prove that:
$X E=Y$.

9) In the opposite figure
M, N are two intersecting circles at A, B,

$$
\overrightarrow{M N} \cap \overline{A B}=\{Y\}, A B=A C \text {, if }
$$

X is the mid point of $\overline{A C}$.
Prove that : NX $=$ NY.

10) $\overline{A B}, \overline{C D}$ are two parallel chords in a circle M, E is the midpoint of $\overline{A B}, \overrightarrow{E M}$ is drawn to cut $\overline{\mathrm{CD}}$ at F . Prove that : $\mathrm{FC}=\mathrm{FD}$.
11) $\overline{A B}, \overline{A C}$ are two chords in a circle M, if D, E are the two the mid points of $\overline{A B}, \overline{A C}$ respectively, $\overrightarrow{\mathrm{DM}}$ is drawn to cut $\stackrel{\rightharpoonup}{\mathrm{AC}}$ at F such $\mathrm{ME}=\mathrm{EF}$. Prove that: $\mathrm{m}(\angle \mathrm{BAC})=45^{\circ}$.
12) $\overline{A B}$ is a diameter in a circle M, the chord $\overline{C D}$ is drawn such that $\overline{C D} / / \overline{A B}, \overline{C X} \perp \overline{A B}$ and $\overline{D Y} \perp \overline{A B}$ Prove that: $A X=B Y$.
13) A, B are two points wher $A B=6 \mathrm{~cm}$, Draw a circle of radius 5 cm and passes through the two points A, B. Find the distance from the center to $\overline{A B}$.
14) Draw the triangle $A B C$ in which $A B=6 \mathrm{~cm}, A C=4 \mathrm{~cm}, m(\angle B A C)=60^{\circ}$. Then draw a circle passes through the two points A, C and its center $\in \overline{A B}$.
15) $\overline{A B}$ is a diameter in a circle $M, \overline{A C}$ is a chord such that $m(\angle B A C)=30^{\circ}$, then draw $\overline{B C}$ and $\overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}$ to cut it at D . Prove that :
[1] $\overline{M D} / / \overline{\mathrm{BC}}$
[2] $B C=$ the length of the radius of this circle.

General Exercise on the Second Unit

First: Complete the following

(1) The two opposite angles in the cyclic quadrilateral are \qquad
(2) The chords which opposite to equal arcs in any circle are
(3) The measure of the inscribed angle equals half the measure of
(4) In the opposite figure

In a circle $M, m(\angle A)=48^{\circ}$, then:
[1] $\mathrm{m}(\angle \mathrm{C})=$ \qquad
[2] $\mathrm{m}(\overparen{\mathrm{BD}})=\ldots . .$. " $\overparen{\mathrm{BD}}$ is the major arc"

(5) The quadrilateral is said to be a cyclic quad. If the measure of an exterior angle at any vertex equals the \qquad of the angle which opposite to its adjacent.
(6) In the opposite figure In a circle $M, m(\angle C A E)=36^{\circ}$, then:
(a) $m(\angle E B C)=$ \qquad (b) $m(\angle E M C)=\ldots \ldots$
(c) $m(\angle E D C)=$ \qquad

(7) The inscribed angle which opposite to a minor arc in a circle is \qquad
(8) The two parallel chords in a circle intercept two \qquad arcs
(9) The measure of an arc of a circle equals double \qquad
Second : Choose the correct answer from the given ones

1) The inscribed angle which opposite to the minor arc in a circle is \qquad
(a) reflex
(b) right
(c) obtuse
(d) acute
2) In the opposite figure

In a circle $M, m(\angle A M B)=52^{\circ}$, then
$m(\angle A D B)=$ \qquad
(a) 52°
(b) 104°
(c) 128°
(d) 308°

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [26]
3) In the opposite figure $\overline{\mathrm{AB}}$ is a diameter in a circle M , $\mathrm{m}(\angle A B C)=40^{\circ}$, then $\mathrm{m}(\overparen{B C})=$ \qquad
(a) 40°
(b) 50°
(c) 90°
(d) 100°

4) In the opposite figure
$\overline{A B}$ is a diameter in a circle M,
$\mathrm{m}(\angle A B D)=25^{\circ}$, then
[1] $m(\angle D A B)=\ldots \ldots{ }^{\circ}$
(a) 25°
(b) 50°
(c) 65°
(d) 90°

[2] $m(\angle D C B)=$ \qquad
(a) 50°
(b) 100°
(c) 115°
(d) 125°
5) In the opposite figure

Two concentric circles at $\mathrm{M}, \overline{\mathrm{AB}} \cap \overline{\mathrm{CD}}=\{\mathrm{M})$, if $\mathrm{m}(\overparen{\mathrm{BD}})=80^{\circ}$, then $\mathrm{m}(\overparen{\mathrm{AC}})=\ldots \ldots .{ }^{\circ}$
(a) 40°
(b) 80°
(c) 100°
(d) 160°
6) Using the following figures choose the correct answer

Figure (1)

Figure (2)

In Figure (1): A circle of center $\mathrm{M}, \mathrm{m}(\angle \mathrm{MBC})=32^{\circ}$, then $\mathrm{m}(\overparen{B C})=$ \qquad
(a) 16°
(b) 32°
(c) 64°
(d) 116°

In Figure (2): $\overline{\mathrm{AB}}$ is a diameter in a circle, $m(\overparen{A C})=m(\overparen{C D})=m(\overparen{D E})=m(\overparen{E F})=m(\overparen{F B})$, then $m(\angle D X E)=\ldots \ldots$.
(a) 18°
(b) 36°
(c) 54°
(d) 72°

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [27]

Model Answers Part (1)

First Complete:

(1) radius
(2) chord
(3) diameter
(4) diameter
(5) infinite
(6) axis of symmetry
(7) three
(8) tangent
(9) parallel
(10) its centre
(11) equal in length (12) $>$
(13) perpendicular to the common chord and bisect it
(14) distant (15) touching externally
(16) infinite (17) congruent (coincide)
(18) half the length of the line segment joining the two points.
(19) the centre of the circumcircle.
(20) inside - lies on - outside.

Second match:

(1) (d)
(2) (e)
(3) (a)
(4) (c)
(5) (b)

Third choose :

(1) c	$(2) a$	(3) b	(4) a	(5) a
$(6) b$	$(7) d$	(8) c	(9) d	$(10) d$
$(11) b$	$(12) c$	$(13) c$	$(14) a$	$(15) c$
$(16) a$	$(17) b$	$(18) d$	$(19) a$	$(20) c$

Fourth Answer the following questions:
(1) $\because \overline{\mathrm{MD}} \perp \overline{\mathrm{AC}}, \because \overline{\mathrm{MH}} \perp \overline{\mathrm{AB}}$
$\therefore D, H$ are mid points of $\overline{A C}$ and $\overline{A B}$ respectively
$\therefore \mathrm{DH}=\frac{1}{2} \mathrm{CB}=8 \div 2=4 \mathrm{~cm}$.
(2) $\because \mathrm{C}$ is a mid point of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathbf{M C}} \perp \overline{\mathbf{A B}}$
In \triangle AMC
$M C^{2}=A M^{2}-A C^{2}=169-144=25$
$M C=5 \mathrm{~cm} \quad, \quad \because M D=13 \mathrm{~cm}$
$\therefore C D=13-5=8 \mathrm{~cm}$.
area of $\triangle A D B=\frac{1}{2} \times A B \times D C$

$$
=\frac{1}{2} \times 24 \times 8=96 \mathrm{~cm}^{2}
$$

(3) cir. $=\pi \times \mathrm{XD} \Rightarrow 44=\frac{22}{7} \times \mathrm{D}$
$\therefore \mathrm{D}=14 \mathrm{~cm}$
$\because \overleftrightarrow{\mathrm{BC}}$ is a tangent.
$\therefore \mathrm{m}(\angle A B C)=90^{\circ}, \because \mathrm{m}(\angle A)=30^{\circ}$
$\therefore B C=\frac{1}{2} \mathrm{AC}$
Let $B C=x \quad, A C=2 x$
$A C^{2}=A B^{2}+B C^{2}$
$(2 x)^{2}=(14)^{2}+(x)^{2}$
$4 x^{2}=196+x^{2}$
$3 x^{2}=196 \quad \rightarrow x^{2} \simeq 65.33$
$\therefore x=\sqrt{65.33} \simeq 8.08 \mathrm{~cm}=B C$
(4) $\because \overrightarrow{C A}$ and $\overrightarrow{C B}$ are two tangents

$$
\therefore \overline{\mathbf{M A}} \perp \overline{\mathbf{A C}} \quad, \overline{\mathbf{M B}} \perp \overline{\mathbf{B C}}
$$

$\because m(\angle A)+m(\angle B)=180^{\circ}$
\therefore AMBC is acyclic quad.
$\therefore \mathrm{m}(\angle \mathrm{DMB})=\mathrm{m}(\angle \mathrm{ACB})$
Exterior = opposite interior

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [29]
(4) In circle $\mathrm{M} \quad \because \overleftrightarrow{\mathrm{AC}}$ is a tangent

$$
\begin{aligned}
& \therefore \overline{\mathrm{MC}} \perp \overleftrightarrow{\mathbf{A C}}, \\
& \therefore \overline{\mathbf{N C}} \perp \overleftrightarrow{\mathbf{A C}},
\end{aligned}
$$

In circle $\mathbf{N}, \quad \overline{\mathrm{AB}}$ is a chord

$$
\overline{\mathrm{NC}} \perp \overleftarrow{\mathrm{AC}}
$$

In circle $\mathrm{N}, \because \overline{\mathrm{AB}}$ is a chord

$$
\begin{aligned}
& , \quad \therefore \overline{\mathrm{MN}} \perp \overline{\mathrm{AB}} \\
& \therefore \mathrm{C} \text { is a mid point of } \overline{\mathrm{AB}} \\
& \triangle \triangle \mathbf{A M C}, \mathrm{BMC} \\
& \left\{\begin{aligned}
\because \overline{\mathrm{MC}} \text { is common side } \\
, \mathrm{CA}=\mathrm{CB} \\
, \mathrm{~m}(\angle \mathrm{MCA})=\mathrm{m}(\angle \mathrm{MCB}) \\
\therefore \triangle \mathrm{AMC} \equiv \triangle \mathrm{BMC} \\
\therefore \mathrm{MA}=\mathrm{MB}
\end{aligned}\right.
\end{aligned}
$$

(5) $\because \mathrm{M}, \mathrm{N}$ are two intersecting circles, $\overline{\mathrm{AB}}$ is the common chord.

$$
\therefore \overline{\mathrm{MN}} \perp \overline{\mathrm{AB}}, \therefore \mathrm{~m}(\angle \mathrm{AFN})=90^{\circ}
$$

$\because E$ is a mid point of $\overline{C D}$
$\therefore \overline{\mathrm{FM}} \perp \overline{\mathrm{CD}}, \mathrm{m}(\angle \mathrm{CEF})=90^{\circ}$
$\because m(\angle A F N)=m(\angle C E F)=90^{\circ}$
$\therefore \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}$
(6) $\because \overleftrightarrow{\mathrm{AC}}$ is the common tangent
$\therefore \overleftrightarrow{\mathbf{M N}} \perp \overleftrightarrow{\mathbf{A C}}$
$\because B \in M N, \overleftrightarrow{E D}$ tangent (N)
$\therefore \overline{\mathrm{MN}} \perp \overline{\mathrm{DE}}$
corresponding angles

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [30]
$\therefore \overleftrightarrow{\mathrm{CA}} / / \overleftrightarrow{\mathrm{DE}}$
$\because \overline{\mathrm{MA}} \perp \overline{\mathrm{DE}} \quad \Rightarrow \overline{\mathrm{DE}}$ is a chord in circle M
$\therefore \mathrm{B}$ is the mid point of $\overline{\mathrm{DE}}$
$\therefore B D=B E$
(7) construction \therefore Draw $\overline{\mathrm{AX}}$ and $\overline{\mathrm{DY}}$
$\because \overrightarrow{\mathrm{AB}}$ is a tangent to circle M at A
$\therefore \overline{\mathrm{MA}} \perp \overrightarrow{\mathrm{AB}} \quad, \because \overline{\mathrm{AC}} / / \overline{\mathrm{FD}}$
$\therefore \mathrm{m}(\angle \mathrm{AXE})=90^{\circ}$
$\because \overrightarrow{\mathrm{DE}}$ is a tangent to circle N at D
$\therefore \overline{\mathrm{ND}} \perp \overline{\mathrm{DE}}$
$\therefore \mathrm{m}(\angle \mathrm{DYB})=90^{\circ}$
\therefore AXDY is a rectangle

$$
\therefore \mathrm{AX}=\mathrm{DY}
$$

$\because \mathrm{M}$ and N are two congruent circles
$\therefore M A=N D$
:MX = NY
$\because \overline{\mathrm{MX}} \perp \overline{\mathbf{E F}}$ $\overline{\mathrm{NY}} \perp \overline{\mathrm{BC}}$
$\therefore \mathrm{EF}=\mathrm{BC}$
(1) $\left(1^{\text {st }}\right)$
$\because A y=X D$
$\because \overline{\mathrm{MX}} \perp \overline{\mathrm{EF}}$
$\therefore \mathbf{x}$ is a mid point of $\overline{\mathrm{EF}}$
similarly y is the mid point of $\overline{\mathrm{BC}}$
$\because E F=B C \quad \therefore \quad B Y=X E$
Subtracting (3) from (2)
$\therefore \mathrm{AB}=\mathrm{DE}$
($\left.2^{\text {nd }}\right)$

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [31]
(8) construction: Draw $\overline{\mathrm{ML}} \perp \overleftrightarrow{\mathrm{EF}}$
$\because \mathrm{x}$ and y are mid points of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively. $\therefore \overline{\mathrm{MX}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{AC}}$
$\because A B=C D$
$\therefore \mathrm{MX}=\mathrm{MY}$
$\triangle M X Y$ is an isosceles Δ
$\therefore \mathrm{LX}=\mathrm{LY}$
$\because \overline{\mathrm{ML}} \perp$ the chord $\overline{\mathrm{EF}}$
$\therefore \mathrm{EL}=\mathrm{LF}$
By subtracting (1) from (2)
We get $X E=Y F$
(9) $\because M N$ are two intersecting circles.
$\therefore \overline{\mathrm{MN}} \perp \overline{\mathrm{AB}}$
$\because \mathrm{x}$ is the mid point of $\overline{\mathrm{AC}}$
$\therefore \overline{\mathrm{NX}} \perp \overline{\mathrm{AC}}$
$\because A B=A C$
$\therefore \mathrm{NX}=\mathrm{NY}$
(10) $\because E$ is the mid point of $\overline{\mathrm{AB}}$
$\therefore \overline{\mathrm{ME}} \perp \overline{\mathrm{AB}}$
$\because \overline{\mathrm{AB}} / / \overline{\mathrm{CD}}$
$\therefore \overline{\mathrm{MF}} \perp \overline{\mathrm{CD}}$
$\therefore \mathrm{F}$ is a mid point of $\overline{\mathrm{CD}}$
\therefore FC $=$ FD

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [32]
(11) $\because E, D$ are the mid point of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ respectively
$\therefore \overline{\mathrm{MD}} \perp \overline{\mathrm{AB}}$
$\overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$
In \triangle EMF
$\because \mathrm{m}(\angle \mathrm{MEF})=90^{\circ} \quad, \mathrm{EM}=\mathrm{EF}$
$\therefore \mathrm{m}(\angle \mathrm{EMF})=\frac{180-90}{2}=45^{\circ}$
$M(\angle E M D)=180^{\circ}-45^{\circ}=135^{\circ}$
In the quad ADME

$m(\angle A)=360^{\circ}-\left(90^{\circ}+90^{\circ}+135^{\circ}\right)=45^{\circ}$
(12) constructions: Draw $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$
$\because \overline{\mathrm{CD}} / / \overline{\mathrm{AB}}$
$\therefore \mathrm{m}(\overline{\mathrm{DB}})=\mathrm{m}(\overline{A C})$
$\therefore A C=B D$
$\triangle \triangle A X C$ and $B Y D$

$$
\left\{\begin{array}{l}
M(\angle D Y B)=m(\angle C X A)=90^{\circ} \\
C X=D Y \\
A C=D B
\end{array}, \begin{array}{l}
\therefore A X C \equiv \triangle B Y D \\
\therefore A X=Y B
\end{array}\right.
$$

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [33]
(13) The distance is the length of the perpendicular from the centre of the circle to $\overline{\mathrm{AB}}$ Distance $=4 \mathrm{~cm}$.

(14)

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [34]
(15) $\because \overline{\mathrm{AB}}$ is a diameter
$\therefore m(\angle A C B)=90^{\circ}$
inscribed (semicirlie)
$\because m(\angle A D M)=m(\angle A C B)=90^{\circ}$ (corresponding)
$\therefore \overline{\mathrm{DM}} / / \overline{\mathrm{CB}}$
$\because \triangle A B C$ right angled at c
$\because m(\angle A)=30^{\circ}$
$\therefore \mathrm{CB}=\frac{1}{2} \mathrm{AB}$

General Exercise on the $2^{\text {nd }}$ unit

First:
(1) supplementary
(2) equal in length
(3) central angle subtended by the same arc.
(4) (1) 132°
(2) 264°
(5) measure
(6)
a) 36°
b) 72°
c) 144°
(7) acute angle
(8) equal
(9) the inscribed angle subtended by this arc.

Second :Choose:

(1) c
(2) c
(3) d
(4) d
(5) d
(6) d,a

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [35]

Questions Part (2)

(1) Choose:

1- The angle of tangency included between

a- two chords	b- two tangents
c- chord and tangent	d- chord and diameter

2- The number of tangents can be drawn from a point lies on a circle equals.
3- The number of common tangents can be drawn to two concentric circles equals
a-zero
b-one
c-two
d-three

4-in the opposite figure $\overrightarrow{A B}, \overrightarrow{A C}$ are two tangents, $m(\angle A)=60^{\circ}$ If $A B=4 \mathrm{~cm}$, then the length of $\overline{\mathrm{CB}}$ equals \qquad

a- 3 cm
b-4cm
$\mathrm{c}-5 \mathrm{~cm}$
$\mathrm{d}-8 \mathrm{~cm}$

5- The number of common tangents can be drawn to two touching internally circles equals \qquad
a- one
b-two
c- three
d-four

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [36]
6- Using the following figures choose the correct answer

Figure (1)

Figure (2)

Figure (3)

Figure (4)

In figure 1: A circle of center $M, m(\angle A M C)=140^{\circ}$, then $m(\angle A D C)=\ldots . .{ }^{\circ}$
$a-40^{\circ}$
$b-70^{\circ}$
c -110°
d- 140°

In figure 2: if $m(\angle A B M)=40^{\circ}$, then $m(\angle A C B)=$ \qquad
$a-80^{\circ}$
b- 100°
c -130°
d -140°

In figure 3: if $m(\angle A B C)=70^{\circ}$, then $m(\angle B D C)=$ \qquad
a- 20°
b- 40°
c- 60°
d -90°

In figure 4: if $m(\angle B A D)=120^{\circ}$, then $m(\angle C B D)=\ldots \ldots .{ }^{\circ}$
a- 15°
b- 30°
c. 45°
d- 60°

7-In the opposite figure:
if $\overrightarrow{B D}$ is a tangent to the circle M,
$m(\angle B A M)=25^{\circ}$, then $m(\angle A B D)=\ldots \ldots .{ }^{\circ}$

$a-25^{\circ}$
$b-50^{\circ}$
c- 65°
d- 130°

8 - In the opposite figure:
$\overrightarrow{B A}$ Is a tangent to the circle M,
if $\mathrm{MB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$, then $\mathrm{AB}=\ldots . . \mathrm{cm}$
a- 5 cm
b- 10 cm
$\mathrm{c}-12 \mathrm{~cm}$
d -13 cm

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [37]
9- It is possible to draw a circle passing through the vertices of a \qquad a-trapezium b-rhombus
c- parallelogram
d- rectangle
10 -in the opposite figure
If $m(\overparen{X Z})=70^{\circ}, m(\overparen{Y N})=30^{\circ}$, then $m(\angle E)=$ \qquad ..
$a-20^{\circ}$
b- 40°
c- 50°
$\mathrm{d}-100^{\circ}$

(2) Answer the following questions

(1) (a) Prove that the two opposite angles in a cyclic quad are supplementary.
(b) In the opposite figure
$A B C D$ is a quadrilateral in which $A B=A D$,
$m(\angle A B D)=30^{\circ}$ and $m(\angle C)=60^{\circ}$ prove that
$A B C D$ is a cyclic quad.
(2) $A B C D$ is a cyclic quadrilateral in which $\overline{A B} / / \overline{C D}$, if E is the mia point of $\overparen{A B}$. prove that : EC=ED.
(3) In the opposite figure $\overrightarrow{\mathrm{MC}} \cap \overleftrightarrow{A B}=\{\mathrm{c}\}, \overline{\mathrm{MC}}$ intersects the circle at D . $m(\angle M A B)=20^{\circ}$, Find
1- $m(\overparen{A D})$
2- $m(\angle D E B)$.

(4) $A B C$ is an acute angled triangle drawn inside a circle. draw $\overrightarrow{A D} \perp \overline{\mathrm{BC}}$ to cut $\overline{\mathrm{BC}}$ at D and cuts the circle at E circle, then draw $\overrightarrow{\mathrm{CN}} \perp \overline{\mathrm{AB}}$ to cut $\overline{A B}$ at N . prove that:

1- ANDC is a cyclic quad.
2- $m(\angle B N D)=m(\angle B E D)$
(5) $A B C$ is an equilateral triangle drawn inside a circle, D is a point on the $\operatorname{arc} A B, E$ is a point on $\overline{D C}$ such that $A D=D E$. Prove that:

1- $A D E$ is an equilateral triangle.
2- $\overline{\mathrm{DB}} / / \overline{\mathrm{AE}}$
3- $m(\angle D C B)=m(\angle E A C)$
4- $\mathrm{DB}=\mathrm{EC}$
(6) In the opposite figure :
$A B C$ is a triangle in which $A B=A C \cdot \overline{B C}$ is a chord in the circle M , if $\overline{A B}, \overline{A C}$ cut the circle at D, E prove that: $\overline{\mathrm{BC}} / / \overline{\mathrm{DE}}$ and if $\mathrm{m}(\angle \mathrm{DCA})=30^{\circ}$ and $\mathrm{m}(\angle \mathrm{A})=50^{\circ}$, find: 1- $\mathrm{m}(\angle \mathrm{BEC})$ 2- $m(\angle B M C)$

3- $m(\angle C D E)$
(7) (a) prove that the angles subtended by the same arcs in the circle are equal in measure .
(b) In the opposite figure $A B C$ is a triangle in a circle, $\overline{\mathrm{BX}} \perp \overline{\mathrm{AC}}, \overrightarrow{A Y} \perp \overline{\mathrm{BC}}$

Cuts it at Y and cuts the circle at Z, prove that:
1- $A B Y X$ is a cyclic quad.
2- $\overline{\mathrm{BC}}$ bisects $\angle \mathrm{XBZ}$

(8) In the opposite figure
$\overline{A B}$ is a diameter of a circle $\mathrm{M}, \mathrm{C} \in$ the circle, $m(\angle C \hat{A} B)=30^{\circ}, D$ is the mid-point of the arc $\overparen{A C}$ and $\overline{D B} \cap \overline{A C}=\{E\}$.

1- find $m(\angle B D C), m(\angle A B D)$
2-prove that $\triangle A B E$ is an isosceles triangle.

(9) In the opposite figure

$\overline{A B}$ is a diameter of a circle M, D is the mid-point of the $\operatorname{arc} \overrightarrow{A c}$ Draw $\overrightarrow{D M}$ to cut the circle at $\mathrm{E}, \overrightarrow{B F}$ is a tangent to the circle to cut $\overrightarrow{A C}$ at F . prove that :

1-MBFD is a cyclic quad.
2- $\overline{\mathrm{DE}} / / \overline{\mathrm{BC}}$.
(10) In the opposite figure
$m(\angle B A C)=m(\angle B D C)=90^{\circ}$
E is the mid-point of $\overline{B C}$ and m ($\angle A E D)=48^{\circ}$

1-find $m(\angle A B D)$

2-prove that: (a) $m(\angle A B D)=m(\angle A C D)$
(b) $m(\angle A E C)=2 m(\angle A B C)$
(11) ABCD is a quadrilateral drawn in a circle, draw $\overline{E F} / / \overrightarrow{C B}$ to cut $\overline{C D}$ at E cuts $\overline{A B}$ at $\mathrm{F}, \overrightarrow{D F} \cap \overrightarrow{C B}=\{\mathrm{x}\}$. prove that:

1- AFED is a cyclic quad.
$2-m(\angle B X F)=m(\angle E A D)$
(12) A is a point outside a circle, draw $\overrightarrow{A B}$ to cut the circle at B, C respectively, then draw $\overline{A D}$ to cut the circle at D, E respectively, if $A C=A E$ prove that:

1- $\overline{B D} / / / \overline{C E}$

$$
2-m(\overparen{B C})=m(\overparen{E D})
$$

(13) In the opposite figure

A semicircle of center $\mathrm{M}, \overline{A D} / / \overline{B C}$,
Prove that ABCE is a parallelogram.

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [40]
(14) In the opposite figure
$A B C D$ is a quadrilateral in a circle $M, \overline{A X}$ bisects $\angle B A C$, $\overline{D Y}$ bisects $\angle B D C$, prove that:

1-AXYD is a cyclic quad.

$2-\overline{X Y} / / \overline{B C}$
(15) In the opposite figure
$\mathrm{m}(\angle \mathrm{C})=70^{\circ}$, the length of $\overparen{C D}=$ the length of $\overparen{B C}$ $\overrightarrow{M N} \cap \overrightarrow{C D}=\{\mathrm{F}\}$ and $\overrightarrow{D A} \cap$ the circle $=\{\mathrm{E}\}$. find $\mathrm{M}(\angle B D C), \mathrm{m}(\angle B A D)$ and $\mathrm{m}(\angle B M E)$

(16) $\overline{A B}$ is a diameter of a circle $\mathrm{M}, \mathrm{D} \in \overrightarrow{A B}, \mathrm{D} \notin \overrightarrow{A B}$. draw the tangent $\overrightarrow{D C}$ at C , draw $\overrightarrow{C B}$, if $\mathrm{E} \in \overrightarrow{C B}$ such that $\mathrm{DE}=\mathrm{DC}$ prove that:

1-ACDE is a cyclic quad.
$2-\overline{A E}$ is the diameter of the circumcircle of the figure $A C D E$.
3- $\overrightarrow{D E}$ is the tangent of the circumcircle of the triangle $A B E$.

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [41]

Model Answers Part (2)

(1) Choose:

1) c
2) one
3) a
4) b
5) a
6) c, c, b, b
7) c
8) c
9)d
9) a

Answer the Following P. 170
(1) (a)Given:
$A B C D$ is cyclic quad.
R.T.P. $m(\angle A)+m(\angle C)=180^{\circ}$
$m(\angle B)+m(\angle D)=180^{\circ}$
proof : $\because \mathrm{m}(\angle \mathrm{A})=\frac{1}{2} \mathrm{~m}(\widehat{B C D})$ and $\mathrm{m}(\angle \mathrm{C})=\frac{1}{2} \mathrm{~m}(\widehat{B A D})$

$\because m(\angle A)+m(\angle C)=\frac{1}{2}[m(\widehat{B C D})+m(\widehat{B A D})]=\frac{1}{2} m$. of the circle
$=\frac{1}{2} \times 360^{\circ}=180^{\circ}$ similarly $\mathrm{m}(\angle B)+\mathrm{m}(\angle \mathrm{D})=180^{\circ}$
(b) $\because \triangle A B D$ is an isosceles \triangle
$\because \mathrm{m}(\angle A B \mathrm{D})=30^{\circ}$
$\therefore \mathrm{m}(\angle A)=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)=120^{\circ}$
$\because m(\angle A)+m(\angle C)=120^{\circ}+60^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is acyclic quad.

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [42]
(2) $\overline{A B} / / \overline{C D} \therefore \mathrm{~m}(\overparen{\mathrm{BC}})=\mathrm{m}(\overparen{\mathrm{AD}}) 1$
$\because E$ is the midpoint of $(A B)$
$\therefore m(\overparen{B E})=m(\overparen{A E}) 2$
by adding 1 and 2
$\therefore m(\overparen{C E})=m(\overparen{D E})$
$\therefore E C=E D$
(3) $\because \overline{M C} \perp \overline{A B}, \because \mathrm{~m}(\angle \mathrm{~A})=20^{\circ}$

$$
\therefore \mathrm{m}(\angle \mathrm{AMC})=180-(90+20)=70^{\circ}
$$

($\angle A M D$) is a central angle subtended by are $(\overparen{\mathrm{AD}})$

$$
\therefore \mathrm{m}(\overparen{\mathrm{AD}})=70^{\circ}, \because \overline{M C} \perp \overline{A B} \quad \therefore \mathrm{CA}=\mathrm{CB}
$$

$\triangle \triangle$ MCA and MCB
$\because M A=M B=r$
$\because A C=B C$
$\because m(\angle M C A)=m(\angle M C B)=90^{\circ}$
$\therefore \triangle \mathrm{MCA} \equiv \triangle \mathrm{MCB}$
$\therefore m(\angle A M C)=m(\angle B M C)=70^{\circ} \quad \therefore m(\angle B E D)=\frac{1}{2} m(\angle B M D)$
$=70 \div 2=35^{\circ}$ (inscribed and central angles subtended by the same are ($\overparen{B D}$))
(4) $\because \overrightarrow{A D} \perp \overrightarrow{B C}, \because \overrightarrow{C N} \perp \overrightarrow{A B}$
$\therefore m(\angle A N C)=m(\angle A D C)=90^{\circ}$

Subtended dry the chord $\overline{A C}$
and on one side of it \therefore ANDC is cyclic quad.

$\therefore \boldsymbol{m}(\angle B N D)=\boldsymbol{m}(\angle A C D)$ exterior $=$ opposite in terior

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [43]
$\because(\angle B E A)$ and $(\angle B C A)$ two inscribed angles subtended by same are ($\overparen{A B})$
$\therefore m(\angle B E D)=m(\angle B N D)$
(5) $\because \triangle A B C$ is an equilateral Δ
$\therefore m(\angle B)=60^{\circ}$
$\because \angle B, \angle D$ are two inscribed angles
subtended by the same are ($\overparen{A C}) \therefore m(\angle D)=m(\angle B)=60^{\circ}$

$\because \mathrm{AD}=\mathrm{DE} \quad \therefore m(\angle D A E)=m(\angle A E D)=\frac{180-60}{2}=60^{\circ}$
$\therefore \triangle \mathrm{ADE}$ is an equilateral Δ
$\angle C D B$ and $\angle C A B$ are two inscribed angles subtended by the same are $\overparen{C B}$
$\therefore m(\angle C D B)=m(\angle C A B)=60^{\circ} \quad \because m(\angle A E D)=60^{\circ}$ (equilateral \triangle)
$\because m(\angle A E D)=m(\angle E D B)=60^{\circ}$ alternate angles
$\therefore \overline{A E} / / \overline{D B}$
$\because \triangle \mathrm{ADE}$ is an equilateral $\triangle \quad \therefore m(\angle A E D)=60^{\circ}$ (exterior angle)
$\therefore \mathrm{m}(\angle A E D)=\mathrm{m}(\angle E A C)+m(\angle E C A)$
$\Rightarrow \angle E A C+\angle E C A=60^{\circ} \rightarrow 1$
$\because \angle D C B+\angle E C A=60^{\circ} \rightarrow 2$
From 1,2 $2 \quad m(\angle D C B)=m(\angle E A C) \rightarrow 3$
In $\triangle \triangle A D B, A E C * \angle B C D, \angle B A D$ are 2 inscribed angles sub tended by same are ($\overparen{B D}$)
$\therefore m(\angle B C D)=m(\angle B A D) \rightarrow 4$
From 3,4
$\therefore m(\angle B A D)=m(\angle E A C) \quad \& \quad A B=A C \& A E=A D$
$\therefore \triangle A D B \equiv \triangle A E C$

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [44]
$\therefore \mathrm{DB}=\mathrm{EC}$
(6) $\ln \triangle A B C, \because A B=A C \therefore \triangle A B C$ is an isosceles \triangle.
$\therefore m(\angle A B C)=m(\angle A C B)$
$\therefore m(\widehat{D E C})=m(\widehat{E D B}) \rightarrow 1$
Subtract $m(\overparen{E D})$ from $1 \therefore m(\overparen{E C})=m(\overparen{D B}) \quad \therefore \overline{B C} / / \overline{D E}$
$\because m(\angle A)=50^{\circ}, A B=A C$
$\therefore m(\angle A C B)=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ} \quad \because m(\angle D C A)=30^{\circ}$
$\therefore m(\angle D C B)=35^{\circ} \quad \because m(\angle D B C)=65^{\circ}$
\therefore In $\triangle D B C \quad \therefore m(\angle B D C)=180^{\circ}-\left(35^{\circ}+65^{\circ}\right)=80^{\circ}$
$\because \angle B D C, \angle B E C$ subtended by same are $\overparen{B C}$
$\therefore m(\angle B E C)=80^{\circ} \quad, \quad \because m(\angle B H C), m(\angle B D C)$ are central, inscribed angles subtended by same are $\overparen{B C}$.
$\therefore m(\angle B M C)=2 m(\angle B D C)=2 \times 80^{\circ}$
$\therefore m(\angle B M C)=160^{\circ}$
$\because \overline{A B}$ is a straight line, $\because \mathrm{m}(\angle B D C)=80^{\circ}$
$\therefore m(\angle A D C)=100^{\circ}, \because \overline{E D} / / \overline{B C}$
$\therefore m(\angle A D E)=65^{\circ}$
$\therefore m(\angle C D E)=100^{\circ}-65^{\circ}=35^{\circ}$

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [45]
Given: $\angle C, \angle D$ are inscribed angles subtended by same are $\overparen{A B}$
R.t.P.: $m(\angle c)=m(\angle D)$
$\because m(\angle C)=\frac{1}{2} m \overparen{A B}, m(\angle D)=\frac{1}{2} m \overparen{A B}$
$\therefore \mathrm{m}(\angle c)=\mathrm{m}(\angle D)$
(ii) In $\triangle A B C \because \overline{B X} \perp \overline{A C} \therefore \mathrm{~m}(\angle A X B)=90^{\circ}$

$$
\begin{aligned}
& \because \overline{A Y} \perp \overline{B C} \therefore m(\angle A Y B)=90^{\circ} \\
& \because m(\angle A X B)=m(\angle A Y B)
\end{aligned}
$$

\& drawn on one side of its sides as a base, on one side
\therefore AXYB is a cyclic quadrilateral
$\therefore m(\angle X A Y)=m(\angle Y B X) \&$
$\because(\angle X A Y),(\angle X B Z)$ are subtended by same are $\widehat{Z C}$
$\therefore m(\angle X B Y)=m(\angle Y B Z)$
$\therefore \overline{B C}$ bisects $\angle X B Z$
(8) $\because \overline{A B}$ is a diameter $\therefore \mathrm{m}(\angle A C B)=90^{\circ}$
$\because m(\angle B A C)=30^{\circ} \& m(\angle B D A)=90^{\circ}$
$\therefore \mathrm{m}(\angle A B C)=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$
$\because \mathrm{D}$ is midpoint of are $\overparen{A C} \quad \therefore \overparen{A D}=\overparen{D C}$
$\therefore \mathrm{m}(\angle \mathrm{ABD})=\mathrm{m}(\angle \mathrm{DBC})=\frac{60^{\circ}}{2}=30^{\circ}$
$\therefore \mathrm{m}(\angle A B D)=30^{\circ}$
$\because A B C D$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle A B C)+\mathrm{m}(\angle A D C)=180^{\circ}$
$\therefore 60^{\circ}+\mathrm{m}(\angle B D C)+\mathrm{m}(\angle B D A)=180^{\circ}$

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [46]
$\therefore m(\angle B D C)=180^{\circ}-\left(60^{\circ}+90^{\circ}\right)=30^{\circ}$
$\therefore \mathrm{m}(\angle B D C)=30^{\circ}$
In $\triangle \triangle B C E, A D E$
$\because m(\angle B C A)=m(\angle B D A)=90^{\circ}$
$\& m(\angle C B D)=m(\angle C A D) \quad$ (subtended by same Arc $\overparen{C D}$)
$\& m(\angle B E C)=m(\angle A E D)(V . O$.A)
$\therefore \triangle B C E \equiv \triangle A D E \quad \therefore \mathrm{BE}=\mathrm{EA}$
(9) $\because \overrightarrow{B F}$ is a tangent to circle M (with a diameter)
$\therefore \mathrm{m}(\angle \mathrm{ABF})=90^{\circ} 1$
$\& \because \mathrm{D}$ is midpoint of $\overline{A C} \quad \therefore \overline{M D} \perp \overline{A C}$
$\therefore \mathrm{m}(\angle \mathrm{MDF})=90^{\circ} \quad \therefore \mathrm{m}(\angle \mathrm{ABF})+\mathrm{m}(\angle M D F)=180^{\circ}$
\therefore MBFD is a cyclic quadrilateral
$\because \overline{A B}$ is a diameter.
$\therefore \mathrm{M}$ is midpoint of $\overline{A B} \& \mathrm{D}$ is midpoint of $\overline{A C}$
$\therefore \overline{D E} / / \overline{B C}$
(10) construction : Draw $\overline{A D}$

Proof: $\because m(\angle B A C)=m(\angle B D C)=90^{\circ}$
\therefore figure $A B C D$ is a cyclic quadrilateral and $\overline{B C}$ is a diameter in the circumcircle of it
$\because \mathrm{E}$ is midpoint of $\overline{B C}$
$\therefore \mathrm{E}$ is Centre of circle which passes through points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
$\therefore m(\angle A B D)=\frac{1}{2} m(\angle A E D)=24^{\circ}$
inscribed angle \& central angle of same arc $(\overparen{A D})$

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [47]
$\because A B C D$ is a cyclic quadrilateral
$\therefore \mathrm{m}(\angle A B D)=\mathrm{m}(\angle A C D) \quad$ (drawn on $\overline{A D} \&$ on one side of it)
$\& \because m(\angle B A D)=m(\angle B D C)=90^{\circ}$
$\therefore \overline{B C}$ is a diameter $\& \because \mathrm{E}$ is the midpoint of $\overline{B C}$
$\therefore E$ is the center of circum circle of $A B C D$
$\therefore \angle A B C \& \angle A E C$ are inscribed \& central angle subtended by arc $\overparen{A C}$
$\therefore \mathrm{m}(\angle A E C)=2 \mathrm{~m}(\angle A B C)$
(11) $\because \overline{E F} / / \overline{B C}$
$\therefore \mathrm{m}(\angle \mathrm{FED})=\mathrm{m}(\angle \mathrm{BCD}) \rightarrow 1$ (corresponding angles)
\& $\because A B C D$ is acyclic quad.
$\therefore \mathrm{m}(\angle F A D)+\mathrm{m}(\angle B C D)=180^{\circ} \rightarrow 2$

From 1 \& 2
$\therefore \mathrm{m}(\angle \mathrm{FAD})+\mathrm{m}(\angle \mathrm{FED})=180^{\circ}$
\therefore AFED is a cyclic quad.
$\because \overline{E F} / / \overline{B C}$
$\therefore \mathrm{m}(\angle E F D)=\mathrm{m}(\angle B X F)$ (corresponding angles)
\& $m(\angle E F D)=m(\angle E A D)$ (drawn on $\overline{E D}$ and on side of it) \&
(AFED is a cyclic quad)
$\therefore \mathrm{m}(\angle B X F)=\mathrm{m}(\angle E A D)$
(12) $\ln \triangle A B C \quad \because A E=A C$
$\therefore \triangle \mathrm{ABC}$ is an isosceles \triangle
$\therefore \mathrm{m}(\angle A C E)=\mathrm{m}(\angle A E C) \rightarrow 1$
\because CBDE is acyclic quad.

Final Revision [Rules + Questions + Answers] Geometry 3 ${ }^{\text {rd }}$ Prep. 2 ${ }^{\text {nd }}$ Term [48]
$\therefore m(\angle C E D)+m(\angle C B D)=180^{\circ}$
\& $m(\angle E C B)+m(\angle B D E)=180^{\circ}$

From 18. 2
$\therefore m(\angle D B C)+m(\angle B C E)=180^{\circ}$ \& $m(\angle B D E)+m(\angle D E C)=180^{\circ}$
$\therefore \widehat{B D} / / \overline{C E} \quad \therefore m(\overparen{B C})=m(\overparen{E D})$
(13) $\ln \triangle A B D \quad \because A B=B D$
$\therefore m(\angle A)=m(\angle B D A)$
$\because m(\angle B C E)=m(\angle B D E) \quad$ (2 inscribed angles subtended by $\overparen{B E}$)
$\therefore \mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{BCE}) \rightarrow 1$
$\because \overline{A D} / / \overline{B C} \therefore \angle$ A supplements $\angle A B C, \angle$ BCE supplements \angle AEC
$\therefore \mathrm{m}(\angle \mathrm{ABC})=\mathrm{m}(\angle \mathrm{AEC}) \rightarrow 2$
From 182
$\therefore A B C E$ is a parallelogram.
(14) $\because A B C D$ is a cyclic quad.
$\therefore \mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle B D C)$ (drawn on $\overline{B C}$ \& on one side of it)
$\therefore \frac{1}{2} \mathrm{~m}(\angle B A C)=\frac{1}{2} \mathrm{~m}(\angle B D C)$
$\therefore \mathrm{m}(\angle \mathrm{XAY})=\mathrm{m}(\angle \mathrm{XDY})$ but they are draw on $\overline{X Y} \&$ on one side of it
$\therefore A X Y D$ is a cyclic quad $\quad \because A B C D$ is a cyclic quad
$\therefore \mathrm{m}(\angle \mathrm{CBD})=\mathrm{m}(\angle C A D) \rightarrow 1$ (drawn on $\overline{C D} \&$ on one side of it)
$\because A X Y D$ is a cyclic quad
$\therefore \mathrm{m}(\angle \mathrm{YXD})=\mathrm{m}(\angle \mathrm{YAD}) \rightarrow 2$ from 18.2
$\therefore m(\angle C B D)=m(\angle Y X D) \quad$ similarly $\quad \therefore m(\angle B C A)=m(\angle X Y A)$
$\therefore \overline{X Y} / / \overline{B C}$

Final Revision [Rules + Questions + Answers] Geometry $3^{\text {rd }}$ Prep. $2^{\text {nd }}$ Term [49]
(15) $\because \overparen{C D}=\overparen{C B} \quad \therefore C D=C B$
$\therefore \triangle \mathrm{CBD}$ is an isosceles \triangle
$\therefore \mathrm{m}(\angle \mathrm{BDC})=\frac{180^{\circ}-70^{\circ}}{2}$
$\therefore m(B D C)=55^{\circ}$
$\because A B C D$ is a cyclic quad
$\therefore \mathrm{m}(\angle B C D)+m(\angle B A D)=180^{\circ}$
$\therefore 70^{\circ}+\mathrm{m}(\angle B A D)=180^{\circ}$
$\therefore m(\angle B A D)=110^{\circ}$
$\because \overline{D E}$ is a straight line
$\therefore \mathrm{m}(\angle E A B)=70^{\circ}$
$\angle E A B \& \angle E M B$ are central \& inscribed angle subtended by arc $\overparen{B E}$
$\therefore \mathrm{m}(\angle \mathrm{BME})=70^{\circ} \times 2=140^{\circ}$
$(\mathrm{m}(\angle \mathrm{BME})=2 \mathrm{~m}(\angle B A E))$
(16) $\because C D=D E$
$\therefore \triangle C D E$ is an isosceles Δ
$\therefore \mathrm{m}(\angle \mathrm{DCE})=\mathrm{m}(\angle \mathrm{DEC})$
$\because \overrightarrow{D C}$ is a tangent at C
$\therefore \mathrm{m}(\angle \mathrm{DCB})=\mathrm{m}(\angle C A D)$
$\therefore \mathrm{m}(\angle C A D)=\mathrm{m}(\angle C E D)$
(drawn on $\overline{C D} \&$ on one side of it)
\therefore ACDE is a cyclic quad.
$\because \overline{A B}$ is a diameter in circle M
$\therefore \mathrm{m}(\angle \mathrm{ACE})=90^{\circ}$

$\therefore \overline{A E}$ is a diameter in circumcircle of figure ACDE
\because ACDE is a cyclic quad
$\therefore \mathrm{m}(\angle \mathrm{DCE})=\mathrm{m}(\angle \mathrm{DAE})$
(drawn on $\overline{D E}$ and on one side of it) \& $\because m(\angle D C E)=m(\angle D E C)$
$\therefore \mathrm{m}(\angle \mathrm{DEC})=\mathrm{m}(\angle \mathrm{DAC})$
\therefore DE is a tangent to circum circle of $\triangle A B E$.

Corollary (1)

The straight line passing through the center of a circle and the midpoint of any chord of it is perpendicular to this chord.
if $\overline{A B}$ is a chord of a circle M and $\overleftrightarrow{M C}$ is drawn
$\because \mathrm{C}$ is the midpoint of $\overline{\mathrm{AB}}$
$\therefore \overleftrightarrow{\mathrm{MC}} \perp \overrightarrow{\mathrm{AB}}$

Corollary (2)

The straight line passing through the center of a circle and perpendicular to any chord of it bisects this chord.
$\overline{A B}$ is a chord of a circle M and $\overleftrightarrow{M C}$ is drawn
$\because \overleftrightarrow{M C} \perp \overrightarrow{\mathrm{AB}}$
$\therefore \mathrm{C}$ is the midpoint of $\overline{A B}$
$\therefore \overline{\mathrm{AC}}=\overline{\mathrm{CB}}$

Theorem

If chords of a circle are equal in length , then they are equidistant from the centre.
$\because \mathrm{AB}=\mathrm{CD}$

$\therefore \overline{\mathrm{MY}}=\overline{\mathrm{MX}}$
Important example
$A B C$ is a triangle in which $A B=A C$. circle M was drawn with diameter $\overline{\mathrm{BC}}$ intersecting $\overline{\mathrm{AB}}$ at D and $\overline{\mathrm{AC}}$ at E ,
$\overline{\mathrm{MX}} \perp \overline{\mathrm{BD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CE}}$ prove that : $\mathrm{BD}=\mathrm{CE}$
Solution
In $\triangle \mathrm{CMY}, \triangle \mathrm{BMX}$
$\because \overline{\mathrm{MB}}=\overline{\mathrm{MC}}$ (two radii)
$\because m(\angle C Y M)=m(\angle B X M)=90^{\circ}$

$\because \mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})$ (because $\mathrm{AB}=\mathrm{AC}$)
$\therefore \Delta \mathrm{CMY} \equiv \Delta \mathrm{BMX}$
$\therefore \mathrm{MX}=\mathrm{MY}$, but $\overline{\mathrm{MX}} \perp \overline{\mathrm{BD}}$ and $\overline{\mathrm{MY}} \perp \overline{\mathrm{CE}}$
$\therefore \overline{\mathrm{BD}}=\overline{\mathrm{CE}}$

EXAMS QUESTIONS

1) In the opposite figure:

$A B$ and $A C$ are two equal chords in circle M, X and Y are the midpoint of $A B$ and $A C m(\angle A)=70^{\circ}$
a) Find m ($\angle D M E)$
c) Prove that $X D=Y E$

2) In the opposite figure:

$B C$ and $A B$ are two chords in circle M, X and D
are the midpoint of $A B$ and $A B m(\angle B)=56^{\circ}, M D=8 \mathrm{~cm}$
a) Find $m(\angle X M D)$

©) Find the length of $D E$
\qquad
\qquad
\qquad

3) In the opposite figure:

$\mathrm{YN}=3 \mathrm{~cm}, \overline{\mathrm{MY}} \perp \overline{\mathrm{BD}}, \mathrm{N}$ is a midpoint of MB
Find area of circle $M \quad\left(\pi=\frac{22}{7}\right)$

\qquad
4) In the opposite figure:
$\overline{\mathrm{AB}}$ is a chord in a circle $, \mathrm{M}, \overline{\mathrm{BC}}$ is a diameter on it, D is the midpoint of $\overline{A B}$

1) Prove that $\overline{\mathrm{MD}} / / \overline{\mathrm{AC}}$
2) Find $m(\angle A)$
3) In the opposite figure:
$A B=A C, X$ is the mid-point of $\overline{A B}, Y$ is the mid-point of $\overline{\mathrm{AC}}$ prove that: $\mathrm{DX}=\mathrm{HY}$

4) In the opposite figure:

A circle $M, \overline{M D} \perp \overline{A B}, m(\angle A)=30^{\circ}$

1) Prove that $\overline{\mathrm{MD}} / / \overline{\mathrm{AC}}$
2) Find $m(\angle A)$

7) In the opposite figure:

A circle $M, \overline{M D} \perp \overline{\mathrm{AB}}, \overline{\mathrm{ME}} \perp \overline{\mathrm{AC}}$, where $\mathrm{MD}=\mathrm{ME}$ $\mathrm{m}(\angle E M D)=120^{\circ}$ prove that $\Delta \mathrm{ABC}$ is equilateral.

\qquad
\qquad
\qquad
\qquad

8) In the opposite figure:

$A B C$ is a triangle in which $A B=A C$. circle M was drawn with diameter $\overline{\mathrm{BC}}$ intersecting $\overline{\mathrm{AB}}$ at D and $\overline{\mathrm{AC}}$ at E , $\overline{\mathrm{MX}} \perp \overline{\mathrm{BD}}, \overline{\mathrm{MY}} \perp \overline{\mathrm{CE}}$ prove that : $\mathrm{BD}=\mathrm{CE}$

\qquad
\qquad
\qquad

Second: Position of a straight line with respect to a circle :

1 the straight line L is located outside the circle M $\mathrm{L} \cap$ circle $\mathrm{M}=\phi$

So : MA >r and vise verse

2
the straight line L is a secant to the circle M $\mathrm{L} \cap$ circle $M=\{C, D\}$

So : MA <r
and vise verse

3 the straight line L is tangent to circle M $\mathrm{L} \cap$ the circle $=\{\mathrm{A}\}$

So : $M A=r$ and vise verse

Fact

A tangent to a circle is perpendicular to the radius at its point of tangency.
$\because \overleftrightarrow{A L}$ is a tangent
$\because \overline{A M}$ is a radius
$\therefore \overleftrightarrow{A L} \perp \overrightarrow{\mathrm{AM}}$

$\therefore \mathrm{m}(\angle \mathrm{MAL})=90^{\circ}$
Fact
If a straight line is perpendicular to a diameter of a circle at one of its endpoints, then it is a tangent to the circle.
$\because \overleftrightarrow{A L} \perp \overrightarrow{\mathrm{AM}}$
$\because \overline{A M}$ is a radius
$\therefore \overleftrightarrow{A L}$ is a tangent

1) Choose the correct answer:

1) If M circle with radius length $=4 \mathrm{~cm}$ and A is a point in its plane, $M A=3 \mathrm{~cm}$, then A is circle M.
(inside - on - outside)
2) If M circle with radius length $=4 \mathrm{~cm}$ and A is a point in its plane, $M A=4 \mathrm{~cm}$, then A is circle M .
(inside - on - outside)
3) If M circle with radius length $=4 \mathrm{~cm}$ and A is a point in its plane, $M A=5 \mathrm{~cm}$, then A is \qquad circle M .
4) A tangent to a circle is the radius
at its point of tangency.
(perpendicular to - parallel to - bisects)
5) If a straight line is perpendicular to a diameter of a circle at one of its endpoints, then it is a to the circle.

(axis of symmetry - tangent - chord)

6) In the opposite figure: $\boldsymbol{m}(\angle \boldsymbol{A} \boldsymbol{M B})=$

$$
\left(25^{\circ}-35^{\circ}-45^{\circ}\right)
$$

2) In the opposite figure:

$A B$ is a tangent to the circle M, E is the midpoint of the chord $C D, m(\angle A B C)=50^{\circ}$

Find : $\boldsymbol{m}(\angle A M E)$

3) In the opposite figure:

$A B$ is a tangent to the circle $M, A M=6 \mathrm{~cm}$
$A B=8 \mathrm{~cm}$
Find : The length of DB

Find : The length of MC

5) In the opposite figure:

$A B$ is a tangent to the circle M at A and $A M=8 \mathrm{~cm}, m(\angle A B M)=30^{\circ}$
Find the length of each : $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$

6) In the opposite figure:

$A B$ is a tangent to the circle M at A and $m(\angle A B M)=30^{\circ}$
prove that : $\overline{\mathrm{AY}}=\overline{\mathrm{BY}}$

Position of a circle with respect to another circle

1) $\mathrm{MN}>\mathrm{r}_{1}+\mathrm{r}_{2}$ the two circles are distant

2) $\mathrm{MN}=r_{1}+r_{2}$ the two circles are touching externally

3) $r_{1}-r_{2}<M N<r_{1}+r_{2}$ the two circles are intersecting

4) $\mathrm{MN}=\mathrm{r}_{1}-r_{2}$ the two circles are touching internally

5) $\mathrm{MN}<r_{1}-r_{2}$ the two circles are one inside the other

6) $\mathrm{MN}=$ zero the two circles are concentric

A

1) In the opposite figure:

M and N are two congruent circles, $\mathrm{AB} / / \mathrm{MN}$ was drawn and intersects circle M at A and B and intersect circle N at C and D Prove that : $\mathrm{AC}=\mathrm{BD}$

Solution

Construction : Draw $\overline{\mathrm{ME}} \perp \mathrm{AD}, \overline{\mathrm{MF}} \perp \mathrm{AD}$
$\because \overline{\mathrm{EF}} / / \overline{\mathrm{MN}}, \mathrm{m}(\angle \mathrm{E})=90^{\circ} \mathrm{m}(\angle \mathrm{F})=90^{\circ}$

$\therefore \overline{\mathrm{ME}} / / \overline{\mathrm{NF}}$
\therefore MENF is a rectangle
$\because \mathrm{M}$ and N are two congruent circles
$\therefore \overline{\mathrm{ME}}=\overline{\mathrm{NF}}$

By adding BC to $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$
$\therefore \overline{\mathrm{AC}}=\overline{\mathrm{ED}}$

1) Choose the correct answer :

1) If the surface of the circle $\mathrm{M} \cap$ If the surface of the circle $\mathrm{N}=$ \varnothing, then the two circles are
(Distant - touching externally - intersecting)
2) If M and N are two centers of two circles with radii r_{1}, r_{2}, where $\mathrm{MN}>\mathrm{r} 1+\mathrm{r} 2$, then the two circles are \qquad
(Distant - touching externally - intersecting
3) If the surface of the circle $M \cap$ If the surface of the circle $N=$ $\{\boldsymbol{A}\}$, then the two circles are
(touching externally - touching internally - intersecting)
4) If the surface of the circle $M \cap$ If the surface of the circle $N=$ the surface of the circle N, then the two circles are
(Distant - touching externally - one inside the other)
5) M and N are two circles touching externally, their radii 9 cm , 4 cm , then $\mathrm{MN}=\ldots \mathrm{cm} \quad(5 \mathrm{~cm}-7 \mathrm{~cm}-13 \mathrm{~cm})$
6) M and N are two circles touching internally, their radii 9 cm , 4 cm , then $\mathrm{MN}=$
.cm
($5 \mathrm{~cm}-7 \mathrm{~cm}$
12 cm)
7) M and N are two circles, their radii $7 \mathrm{~cm}, 5 \mathrm{~cm}$, then $\mathrm{MN}=$ 12 cm , then the two circles are \qquad
(Distant - touching externally - touching internally)
8) M and N are two circles, their radii $7 \mathrm{~cm}, 5 \mathrm{~cm}$, then $\mathrm{MN}=$ 2 cm , then the two circles are
(Distant - touching externally - touching internally)
9) M and N are two circles, their radii $7 \mathrm{~cm}, 5 \mathrm{~cm}$, then $\mathrm{MN}=$ 15 cm , then the two circles are
(Distant - touching externally - touching internally)
10) M and N are two circles, their radii $7 \mathrm{~cm}, 2 \mathrm{~cm}$, then $\mathrm{MN}=$ 3 cm , then the two circles are
(Distant - touching externally - one inside the other)
11) The radius of circle M is 6 cm The radius of circle N is 5 cm , then $\mathrm{MN}=3 \mathrm{~cm}$, then the two circles are
(touching externally - touching internally - intersecting)
12) M and N are two intersecting circles their radii 4 cm and 6 cm

1) In the opposite figure:

Two concentric circles $M, \overline{A B}$ is a chord in the large circle and intersects the smaller circle at C and $D, \overline{A E}$ is a chord in the larger circle and intersects the smaller circle at Z and L. if $m(\angle A B E)=m(\angle A E B)$
 then prove that: $\mathbf{C D}=\mathbf{Z L}$

2) In the opposite figure:

Two concentric circles $M, \overline{A B}$ is a chord in the larger circle and intersects smaller circle at C and D . is a chord in the larger circle and intersects the smaller
 circle at Z and L where $A B=E F$
$\begin{array}{ll}\text { Prove that : 1) } C D=Z L & \text { 2) } A D=Z F\end{array}$

3) In the opposite figure:

The two circles M and N intersects at A and B
$C D$ is a chord in the circle M cuts $M N$ at E , If E is the midpoint of $C D$

Prove that $\overline{\mathbf{A B}} / / \overline{\mathbf{C D}}$

\qquad
\qquad

4) In the opposite figure:

The two circles M and N intersect at A and B. is drawn $M X \perp A C M N$ is drawn,$A C=A B$

1) Prove that : $M D=M X$
2) Prove that : $X Y=D E$

5) In the opposite figure:

M and N are two intersecting circles At A and $\mathrm{B}, \mathrm{m}(\angle \mathrm{C})=55^{\circ}$, $\mathrm{m}(\angle \mathrm{N})=125^{\circ}$ Prove that : $\overrightarrow{\mathbf{C D}}$ is a tangent to the circle

6) In the opposite figure:

M and N are two congruent circles, $\mathrm{AB} / / \mathrm{MN}$ was drawn and intersects circle M at A and B and intersect circle N at C and D Prove that : A
\qquad

$\bullet \angle$ AMB is called central angle

- $m(\overparen{A B})=m(\angle A M B)$
$\bullet \angle A E B$ is called inscribed angle
$-\mathrm{m}(\angle \mathrm{AEB})=\mathrm{m}(\angle \mathrm{AMB}) \quad$ (subtended by $\overparen{\mathrm{AB}}$)
- $\mathrm{m}(\angle \mathrm{AEB})=\frac{1}{2} \mathrm{~m}(\overparen{\mathrm{AB}})$

Central Angle : It is the angle whose vertex is the center of the circle and its sides contain two radii of the circle.

- Measure of the arc = The measure of the central angle opposite to it.

Inscribed angle : An angle the vertex of it lies on the circle and its sides contain two chords of the circle.

The measure of the inscribed angle = half the measure of the central angle subtended by the same arc.

- The measure of the inscribed angle $=$ half the measure of the opposite arc.
- The inscribed angle drawn in a semicircle is a right angle.
$\because \angle A E B$ is drawn in a semicircle

$\therefore(\angle \mathrm{AEB})=90^{\circ}$

Corollary

- If two parallel chords are drawn in a circle, then the measures of the two arcs between them are equal.
$\because A B / / C D$

$\therefore m(\overparen{A C})=m(\overparen{B D})$

Corollary

- If a chord is parallel to a tangent of a circle, then the measures of the two arcs between them are equal.

$\because A B / / C D$
$\therefore m(\overparen{A C})=m(\overparen{B C})$
- If the measures of arcs are equal, then their chords are equal in length, and conversely

Theorem

- In the same circle, the measures of all inscribed angles subtended by the same arc are equal.
$\because \angle \mathrm{C}, \angle \mathrm{D}$ and $\angle \mathrm{E}$ are inscribed angles subtended by $\overparen{A B}$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=\mathrm{m}(\angle \mathrm{E})$

Corollary

- In the same circle or in congruent circles, the measures of the inscribed angles subtended by arcs of equal measures are equal

$\because m(\overparen{A C})=m(\overparen{F D})$
$\therefore \mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})$

Exercises from school book and governorates' exams
Exercises on the measure of inscribed angle with respect to the measure of arc :

1) Complete the following figures:

$$
m(\overparen{A B})=
$$

(4)

$\mathrm{m}(\angle \mathrm{C})=$

(2)

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{~A})= \\
& \mathrm{m}(\overparen{\mathrm{AC}})=\ldots
\end{aligned}
$$

$\mathrm{m}(\angle \mathrm{EAC})=$

$\mathrm{m}(\angle \mathrm{C})=$
$\mathrm{m}(\angle \mathrm{B})=$
(6)

$\mathrm{m}(\angle \mathrm{DCB})=$

Exercises on the measure of inscribed angle with respect to the measure of equal arcs :
2) find the value of the symbol in the following figures

- Exercises on the measure of inscribed angle with respect to the measure of the central angle :

3) find the value of the symbol in the following figures :

1 X = \qquad		$\mathrm{Y}=$	3 C $Z=$ \qquad
$\mathrm{L}=.$.			6
$Z=$ \qquad		$\mathrm{L}=$	9 $X=$
10 $\mathrm{Y}=$ \qquad Z= \qquad		$\begin{aligned} & \mathrm{X}=\ldots \\ & \mathrm{Y}=\ldots \ldots \end{aligned}$	12

4) In the opposite figure:

M is a circle,$m(\angle M A C)=35^{\circ}$
Find $m(\angle A B C)$

\qquad
\qquad
\qquad
\qquad
\qquad

5) In the opposite figure:
 $\overline{\mathrm{AB}}$ is a diameter in the circle M
 with radius length $4 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{~A})=30^{\circ}$
 1) Find $m(\angle A B C)$
 2) Find the length of $B C$

\qquad
\qquad
\qquad
\qquad
6) In the opposite figure:
$A B$ and $C D$ are two equal chords
Prove that Δ AEC is isosceles

\qquad
\qquad
\qquad
$D \in \overrightarrow{C B}$ such that $m(\angle A B D)=120^{\circ}$ if $m(\angle B M C)=100^{\circ}$
Find with proof $m(\angle A C B)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8) In the opposite figure:

The chords $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BE}}$ intersects At X, M is the centre of the circle, if $m(\angle B A C)=40^{\circ}$
Find:
f) $\mathrm{m}(\angle B E C)$
2) $m(\angle B M C)$
3) m (BDC)

1) If there is a point in the plane of the figure such that it is equidistant from its vertices.
2) If there are two equal angles in measure and drawn on one of its sides as a base and on one side of this side.
3) If there are two opposite supplementary angles " their sum $=180$ "
4) If there is an exterior angle at any of its vertices equal in measure to the measure of the interior angle at the opposite vertex.

In the opposite figure:

$A B$ is a diameter in circle M, X is the midpoint of $A C$ and $X M$ intersecting the tangent of the circle at B in Y.

Prove that :

The figure AXBY is a cyclic quadrilateral.

solution

$\because \mathrm{X}$ is the midpoint of AC
$\because A B$ is a diameter and, $B Y$ is a tangent at B
$\therefore B Y \perp A B, m(\angle A B Y)=90^{\circ}$
$\because m(\angle A X Y)=m(\angle A B Y)=90^{\circ}$
\therefore Figure $A X B Y$ is a cyclic quadrilateral.

In the opposite figure:

ABCD is a cyclic quadrilateral with diagonals intersecting at $F, X \in A F$ and $Y \in D F$ where $X Y / / A D$.

Prove that:

First : BXYC is cyclic quadrilateral.
Second : $m(\angle X B Y)=m(\angle X C Y)$

$\because \mathrm{XY} / / \mathrm{AD} \quad \therefore \mathrm{m}(\angle C A D)=\mathrm{m}(\angle C X Y)$ Corresponding
$\because m(\angle C A D)=m(\angle C B D)$ both are inscribed and common in $\overline{C D}$
$\therefore \mathrm{m}(\angle C X Y)=\mathrm{m}(\angle C B Y) \quad$ (two inscribed angles on the base $\overline{\mathrm{CY}}$)
\therefore BXYC is a cyclic quadrilateral
$\because B X Y C$ is a cyclic quadrilateral $\quad \therefore \mathrm{m}(\angle \mathrm{XBY})=\mathrm{m}(\angle X C Y)$ because they are both inscribed angles common at $\widehat{C D}$1) In the opposite figure:M is a circle $A B C D$ is a cyclic quadrilateral,$m(\angle C)=100^{\circ}$
Find: 1) $\mathbf{m}(\angle \mathbf{A})$ 2) $m(\overparen{B C D})$
\qquad
\qquad
\qquad
\qquad
\qquad
2) In the opposite figure: $A B C D$ is a quadrilateral drawn in the circle N, if $m(\angle B N D)=130^{\circ}$
Find: m($\angle B A D)$

\qquad
\qquad
3) In the opposite figure:

ABCD is a cyclic quadrilateral

$m(\angle C D B)=40^{\circ}, B C=D C$
Find: $\mathbf{m}(\angle \mathbf{A})$
4) In the opposite figure:
$\overline{\mathbf{A D}} / / \overline{\mathbf{B E}}, m(\angle B A D)=100^{\circ}$
$m(\angle E D C)=30^{\circ} \quad, \quad$ Find $: m(\angle C D A)$

\qquad
\qquad
\qquad

5) In the opposite figure:

$A B C D$ is a cyclic quadrilateral in which $\mathrm{m}(\angle \mathrm{ABC})=70^{\circ}$
The length of $\overparen{A D}=$ The length of $D C$
Find: $m(\angle A C D)$

6) In the opposite figure:
$A B C D$ is a quadrilateral , where $A B=A D$,
$m(\angle A B D)=35^{\circ}, m(\angle B C D)=70^{\circ}$ Prove that:

1) $A B C D$ is a cyclic quadrilateral
2) 2) $\overrightarrow{C A}$ bisects $\angle B C D$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquadone circle passing through them.
1) In the opposite figure:
$\overleftrightarrow{\mathrm{BC}}$ is a tangent to the circle M at C ,
D is the midpoint of $E C, \overline{\mathbf{M C}} / / \overline{\mathbf{A B}}$ Prove that :
$A B C D$ is cyclic quadrilateral .

10) In the opposite figure:

$A B$ is a diameter in circle M, X is the midpoint of $A C$ and $X M$ intersecting the tangent of the circle at B in Y .
Prove that :
the figure AXBY is a cyclic quadrilateral.

\qquad
..
\qquad
\qquad
\qquad
\qquad
\qquad
11) In the opposite figure:
A circle with center M. X and Y are the two midpoints of $A B$ and $A C$ respectively.
Prove that :
First : AXYM is a cyclic quadrilateral.
Second : $m(\angle M X Y)=m(\angle M C Y)$

Third : AM is a diameter in the circle passing through the points $\mathrm{A}, \mathrm{X}, \mathrm{Y}$ and M
12) In the opposite figure:

ABCD is a cyclic quadrilateral with diagonals intersecting at $F, X \in A F$ and $Y \in D F$ where $X Y / / A D$

Prove that:

First : BXYC is cyclic quadrilateral.

Second : $m(\angle X B Y)=m(\angle X C Y)$

13) In the opposite figure:

In the opposite figure : ABCD is a cyclic
quadrilateral which has $\overrightarrow{A E}$ bisects $\angle B A C$ and $\overrightarrow{D F}$ bisects $\angle B D C$, Prove that :
First: AEFD is a cyclic quadrilateral Second: $\overline{\mathrm{EF}} / / \overline{\mathrm{BC}}$.

\qquad
14) In the opposite figure:
$A B C$ is a triangle in which has $A B=A C$ and $\overrightarrow{B X}$ bisects $\angle B$ and intersect $A C$ at $X, \overrightarrow{C Y}$ bisects $\angle C$ and intersect $A B$ at Y, Prove that :
First: $B C X Y$ is a cyclic quadrilateral.
Second: $\overline{\mathrm{XY}} / / \overline{\mathrm{BC}}$

\qquad

